Source code for oggm.shop.bedtopo
import logging
import warnings
import os
import numpy as np
import pandas as pd
import xarray as xr
try:
import salem
except ImportError:
pass
from oggm import utils, cfg
# Module logger
log = logging.getLogger(__name__)
default_base_url = 'https://cluster.klima.uni-bremen.de/~fmaussion/icevol/composite/'
[docs]
@utils.entity_task(log, writes=['gridded_data'])
def add_consensus_thickness(gdir, base_url=None):
"""Add the consensus thickness estimate to the gridded_data file.
varname: consensus_ice_thickness
Parameters
----------
gdir ::py:class:`oggm.GlacierDirectory`
the glacier directory to process
base_url : str
where to find the thickness data. Default is
https://cluster.klima.uni-bremen.de/~fmaussion/icevol/composite
"""
if base_url is None:
base_url = default_base_url
if not base_url.endswith('/'):
base_url += '/'
rgi_str = gdir.rgi_id
rgi_reg_str = rgi_str[:8]
url = base_url + rgi_reg_str + '/' + rgi_str + '_thickness.tif'
input_file = utils.file_downloader(url)
dsb = salem.GeoTiff(input_file)
thick = utils.clip_min(dsb.get_vardata(), 0)
in_volume = thick.sum() * dsb.grid.dx ** 2
with warnings.catch_warnings():
# This can trigger an out of bounds warning
warnings.filterwarnings("ignore", category=RuntimeWarning,
message='.*out of bounds.*')
thick = gdir.grid.map_gridded_data(thick, dsb.grid, interp='linear')
# Correct for volume
thick = utils.clip_min(thick.filled(0), 0)
out_volume = thick.sum() * gdir.grid.dx ** 2
if out_volume > 0:
thick *= in_volume / out_volume
# We mask zero ice as nodata
thick = np.where(thick == 0, np.nan, thick)
# Write
with utils.ncDataset(gdir.get_filepath('gridded_data'), 'a') as nc:
vn = 'consensus_ice_thickness'
if vn in nc.variables:
v = nc.variables[vn]
else:
v = nc.createVariable(vn, 'f4', ('y', 'x', ), zlib=True)
v.units = 'm'
ln = 'Ice thickness from the consensus estimate'
v.long_name = ln
v.base_url = base_url
v[:] = thick
@utils.entity_task(log)
def consensus_statistics(gdir):
"""Gather statistics about the consensus data interpolated to this glacier.
"""
d = dict()
# Easy stats - this should always be possible
d['rgi_id'] = gdir.rgi_id
d['rgi_region'] = gdir.rgi_region
d['rgi_subregion'] = gdir.rgi_subregion
d['rgi_area_km2'] = gdir.rgi_area_km2
d['consensus_vol_km3'] = 0
d['consensus_area_km2'] = 0
d['consensus_perc_cov'] = 0
try:
with xr.open_dataset(gdir.get_filepath('gridded_data')) as ds:
thick = ds['consensus_ice_thickness'].where(ds['glacier_mask'], np.nan).load()
d['consensus_vol_km3'] = float(thick.sum() * gdir.grid.dx ** 2 * 1e-9)
d['consensus_area_km2'] = float((~thick.isnull()).sum() * gdir.grid.dx ** 2 * 1e-6)
d['consensus_perc_cov'] = float(d['consensus_area_km2'] / gdir.rgi_area_km2)
except (FileNotFoundError, AttributeError, KeyError):
pass
return d
[docs]
@utils.global_task(log)
def compile_consensus_statistics(gdirs, filesuffix='', path=True):
"""Gather as much statistics as possible about a list of glaciers.
Parameters
----------
gdirs : list of :py:class:`oggm.GlacierDirectory` objects
the glacier directories to process
filesuffix : str
add suffix to output file
path : str, bool
Set to "True" in order to store the info in the working directory
Set to a path to store the file to your chosen location
"""
from oggm.workflow import execute_entity_task
out_df = execute_entity_task(consensus_statistics, gdirs)
out = pd.DataFrame(out_df).set_index('rgi_id')
if path:
if path is True:
out.to_csv(os.path.join(cfg.PATHS['working_dir'],
('consensus_statistics' +
filesuffix + '.csv')))
else:
out.to_csv(path)
return out