"""Flowline modelling: bed shapes and model numerics.
"""
# Builtins
import logging
import copy
from collections import OrderedDict
from functools import partial
from time import gmtime, strftime
import os
import shutil
import warnings
# External libs
import numpy as np
import shapely.geometry as shpg
import xarray as xr
from scipy.linalg import solve_banded
# Optional libs
try:
import salem
except ImportError:
pass
import pandas as pd
# Locals
from oggm import __version__
import oggm.cfg as cfg
from oggm import utils
from oggm import entity_task
from oggm.exceptions import InvalidParamsError, InvalidWorkflowError
from oggm.core.massbalance import (MultipleFlowlineMassBalance,
ConstantMassBalance,
MonthlyTIModel,
RandomMassBalance)
from oggm.core.centerlines import Centerline, line_order
from oggm.core.inversion import find_sia_flux_from_thickness
# Constants
from oggm.cfg import SEC_IN_DAY, SEC_IN_YEAR
from oggm.cfg import G, GAUSSIAN_KERNEL
# Module logger
log = logging.getLogger(__name__)
[docs]
class Flowline(Centerline):
"""A Centerline with additional properties: input to the FlowlineModel
"""
[docs]
def __init__(self, line=None, dx=1, map_dx=None,
surface_h=None, bed_h=None, rgi_id=None,
water_level=None, gdir=None):
""" Initialize a Flowline
Parameters
----------
line : :py:class:`shapely.geometry.LineString`
the geometrical line of a :py:class:`oggm.Centerline`
dx : float
Grid spacing in pixel coordinates
map_dx : float
DEM grid spacing in meters
surface_h: :py:class:`numpy.ndarray`
elevation [m] of the flowline grid points
bed_h: :py:class:`numpy.ndarray`
elevation[m] of the bedrock at the flowline grid points
rgi_id : str
The glacier's RGI identifier
water_level : float
The water level (to compute volume below sea-level)
"""
# This is do add flexibility for testing
if dx is None:
dx = 1.
if line is None:
coords = np.arange(len(surface_h)) * dx
line = shpg.LineString(np.vstack([coords, coords * 0.]).T)
super(Flowline, self).__init__(line, dx, surface_h)
self._thick = utils.clip_min(surface_h - bed_h, 0.)
self.map_dx = map_dx
self.dx_meter = map_dx * self.dx
self.bed_h = bed_h
self.rgi_id = rgi_id
self.water_level = water_level
self._point_lons = None
self._point_lats = None
self.map_trafo = None
if gdir is not None:
self.map_trafo = partial(gdir.grid.ij_to_crs, crs=salem.wgs84)
# volume not yet removed from the flowline
self.calving_bucket_m3 = 0
def has_ice(self):
return np.any(self.thick > 0)
@utils.lazy_property
def water_depth(self):
return utils.clip_min(self.water_level - self.bed_h, 0)
@utils.lazy_property
def bed_below_wl(self):
return self.bed_h < self.water_level
@Centerline.widths.getter
def widths(self):
"""Compute the widths out of H and shape"""
return self.widths_m / self.map_dx
@property
def thick(self):
"""Needed for overriding later"""
return self._thick
@thick.setter
def thick(self, value):
self._thick = utils.clip_min(value, 0)
@Centerline.surface_h.getter
def surface_h(self):
return self._thick + self.bed_h
@surface_h.setter
def surface_h(self, value):
self.thick = value - self.bed_h
@property
def bin_area_m2(self):
# area of the grid point
# this takes the ice thickness into account
return np.where(self.thick > 0, self.widths_m, 0) * self.dx_meter
@property
def length_m(self):
# TODO: take calving bucket into account for fine tuned length?
lt = cfg.PARAMS.get('min_ice_thick_for_length', 0)
if cfg.PARAMS.get('glacier_length_method') == 'consecutive':
if (self.thick > lt).all():
nx = len(self.thick)
else:
nx = np.where(self.thick <= lt)[0][0]
else:
nx = len(np.where(self.thick > lt)[0])
return nx * self.dx_meter
@property
def terminus_index(self):
# the index of the last point with ice thickness above
# min_ice_thick_for_length and consistent with length
lt = cfg.PARAMS.get('min_ice_thick_for_length', 0)
if cfg.PARAMS.get('glacier_length_method') == 'consecutive':
if (self.thick > lt).all():
ix = len(self.thick) - 1
else:
ix = np.where(self.thick <= lt)[0][0] - 1
else:
try:
ix = np.where(self.thick > lt)[0][-1]
except IndexError:
ix = -1
return ix
def _compute_point_lls(self):
if getattr(self, '_point_lons', None) is None:
if getattr(self, 'map_trafo', None) is None:
raise AttributeError('Cannot compute lons and lats on this '
'flowline. It needs to be initialized '
'with a gdir kwarg.')
lons, lats = self.map_trafo(*self.line.xy)
self._point_lons = lons
self._point_lats = lats
@property
def point_lons(self):
self._compute_point_lls()
return self._point_lons
@property
def point_lats(self):
self._compute_point_lls()
return self._point_lats
@property
def volume_m3(self):
return utils.clip_min(np.sum(self.section * self.dx_meter) -
getattr(self, 'calving_bucket_m3', 0), 0)
@property
def volume_km3(self):
return self.volume_m3 * 1e-9
def _vol_below_level(self, water_level=0):
thick = np.copy(self.thick)
n_thick = np.copy(thick)
bwl = (self.bed_h < water_level) & (thick > 0)
n_thick[~bwl] = 0
self.thick = n_thick
vol_tot = np.sum(self.section * self.dx_meter)
n_thick[bwl] = utils.clip_max(self.surface_h[bwl],
water_level) - self.bed_h[bwl]
self.thick = n_thick
vol_bwl = np.sum(self.section * self.dx_meter)
self.thick = thick
fac = vol_bwl / vol_tot if vol_tot > 0 else 0
return utils.clip_min(vol_bwl -
getattr(self, 'calving_bucket_m3', 0) * fac, 0)
@property
def volume_bsl_m3(self):
return self._vol_below_level(water_level=0)
@property
def volume_bsl_km3(self):
return self.volume_bsl_m3 * 1e-9
@property
def volume_bwl_m3(self):
return self._vol_below_level(water_level=self.water_level)
@property
def volume_bwl_km3(self):
return self.volume_bwl_m3 * 1e-9
@property
def area_m2(self):
# TODO: take calving bucket into account
return np.sum(self.bin_area_m2)
@property
def area_km2(self):
return self.area_m2 * 1e-6
def _add_attrs_to_dataset(self, ds):
"""Add bed specific parameters."""
# This must be done by child classes
raise NotImplementedError()
def to_geometry_dataset(self):
"""Makes an xarray Dataset out of the flowline.
Useful only for geometry files (FileModel / restart files),
therefore a bit cryptic regarding dimensions.
"""
h = self.surface_h
nx = len(h)
ds = xr.Dataset()
ds.coords['x'] = np.arange(nx)
ds.coords['c'] = [0, 1]
try:
ds['linecoords'] = (['x', 'c'], np.asarray(self.line.coords))
except AttributeError:
# squeezed lines
pass
ds['surface_h'] = (['x'], h)
ds['bed_h'] = (['x'], self.bed_h)
ds.attrs['class'] = type(self).__name__
ds.attrs['map_dx'] = self.map_dx
ds.attrs['dx'] = self.dx
self._add_attrs_to_dataset(ds)
return ds
def to_diagnostics_dataset(self):
"""Makes an xarray Dataset out of the flowline.
Useful for run_until_and_store's flowline diagnostics data.
"""
h = self.bed_h
nx = len(h)
ds = xr.Dataset()
ds.coords['dis_along_flowline'] = np.arange(nx) * self.map_dx * self.dx
try:
# This is a bit bad design, but basically if some task
# computed to the lons of the flowlines before, use it
# we don't have access to gdir here so we cant convert the coords
ds['point_lons'] = (['dis_along_flowline'], self.point_lons)
ds['point_lons'].attrs['description'] = 'Longitude along the flowline'
ds['point_lons'].attrs['unit'] = 'deg'
ds['point_lats'] = (['dis_along_flowline'], self.point_lats)
ds['point_lats'].attrs['description'] = 'Latitude along the flowline'
ds['point_lats'].attrs['unit'] = 'deg'
except AttributeError:
# squeezed lines or we haven't computed lons and lats yet
pass
ds['bed_h'] = (['dis_along_flowline'], h)
ds['bed_h'].attrs['description'] = 'Bed elevation along the flowline'
ds['bed_h'].attrs['unit'] = 'm'
ds.attrs['class'] = type(self).__name__
ds.attrs['map_dx'] = self.map_dx
ds.attrs['dx'] = self.dx
return ds
[docs]
class ParabolicBedFlowline(Flowline):
"""A parabolic shaped Flowline with one degree of freedom
"""
[docs]
def __init__(self, line=None, dx=None, map_dx=None,
surface_h=None, bed_h=None, bed_shape=None, rgi_id=None,
water_level=None, gdir=None):
""" Instantiate.
Parameters
----------
line : :py:class:`shapely.geometry.LineString`
the geometrical line of a :py:class:`oggm.Centerline`
"""
super(ParabolicBedFlowline, self).__init__(line, dx, map_dx,
surface_h, bed_h,
rgi_id=rgi_id,
water_level=water_level,
gdir=gdir)
assert np.all(np.isfinite(bed_shape))
self.bed_shape = bed_shape
@property
def widths_m(self):
"""Compute the widths out of H and shape"""
return np.sqrt(4*self.thick/self.bed_shape)
@property
def section(self):
return 2./3. * self.widths_m * self.thick
@section.setter
def section(self, val):
self.thick = (0.75 * val * np.sqrt(self.bed_shape))**(2./3.)
@utils.lazy_property
def shape_str(self):
"""The bed shape in text (for debug and other things)"""
return np.repeat('parabolic', self.nx)
def _add_attrs_to_dataset(self, ds):
"""Add bed specific parameters."""
ds['bed_shape'] = (['x'], self.bed_shape)
[docs]
class RectangularBedFlowline(Flowline):
"""Simple shaped Flowline, glacier width does not change with ice thickness
"""
[docs]
def __init__(self, line=None, dx=None, map_dx=None,
surface_h=None, bed_h=None, widths=None, rgi_id=None,
water_level=None, gdir=None):
""" Instantiate.
Parameters
----------
line : :py:class:`shapely.geometry.LineString`
the geometrical line of a :py:class:`oggm.Centerline`
"""
super(RectangularBedFlowline, self).__init__(line, dx, map_dx,
surface_h, bed_h,
rgi_id=rgi_id,
water_level=water_level,
gdir=gdir)
self._widths = widths
@property
def widths_m(self):
"""Compute the widths out of H and shape"""
return self._widths * self.map_dx
@property
def section(self):
return self.widths_m * self.thick
@section.setter
def section(self, val):
self.thick = val / self.widths_m
@utils.lazy_property
def shape_str(self):
"""The bed shape in text (for debug and other things)"""
return np.repeat('rectangular', self.nx)
def _add_attrs_to_dataset(self, ds):
"""Add bed specific parameters."""
ds['widths'] = (['x'], self._widths)
[docs]
class TrapezoidalBedFlowline(Flowline):
"""A Flowline with trapezoidal shape and two degrees of freedom
"""
[docs]
def __init__(self, line=None, dx=None, map_dx=None, surface_h=None,
bed_h=None, widths=None, lambdas=None, rgi_id=None,
water_level=None, gdir=None):
""" Instantiate.
Parameters
----------
line : :py:class:`shapely.geometry.LineString`
the geometrical line of a :py:class:`oggm.Centerline`
"""
super(TrapezoidalBedFlowline, self).__init__(line, dx, map_dx,
surface_h, bed_h,
rgi_id=rgi_id,
water_level=water_level,
gdir=gdir)
self._w0_m = widths * self.map_dx - lambdas * self.thick
if np.any(self._w0_m <= 0):
raise ValueError('Trapezoid beds need to have origin widths > 0.')
self._prec = lambdas == 0
self._lambdas = lambdas
@property
def widths_m(self):
"""Compute the widths out of H and shape"""
return self._w0_m + self._lambdas * self.thick
@property
def section(self):
return (self.widths_m + self._w0_m) / 2 * self.thick
@section.setter
def section(self, val):
b = 2 * self._w0_m
a = 2 * self._lambdas
with np.errstate(divide='ignore', invalid='ignore'):
thick = (np.sqrt(b**2 + 4 * a * val) - b) / a
thick[self._prec] = val[self._prec] / self._w0_m[self._prec]
self.thick = thick
@utils.lazy_property
def shape_str(self):
"""The bed shape in text (for debug and other things)"""
return np.repeat('trapezoid', self.nx)
def _add_attrs_to_dataset(self, ds):
"""Add bed specific parameters."""
ds['widths'] = (['x'], self.widths)
ds['lambdas'] = (['x'], self._lambdas)
[docs]
class MixedBedFlowline(Flowline):
"""A Flowline which can take a combination of different shapes (default)
The default shape is parabolic. At ice divides a rectangular shape is used.
And if the parabola gets too flat a trapezoidal shape is used.
"""
[docs]
def __init__(self, *, line=None, dx=None, map_dx=None, surface_h=None,
bed_h=None, section=None, bed_shape=None,
is_trapezoid=None, lambdas=None, widths_m=None, rgi_id=None,
water_level=None, gdir=None):
""" Instantiate.
Parameters
----------
line : :py:class:`shapely.geometry.LineString`
the geometrical line of a :py:class:`oggm.Centerline`
"""
super(MixedBedFlowline, self).__init__(line=line, dx=dx, map_dx=map_dx,
surface_h=surface_h.copy(),
bed_h=bed_h.copy(),
rgi_id=rgi_id,
water_level=water_level,
gdir=gdir)
# To speedup calculations if no trapezoid bed is present
self._do_trapeze = np.any(is_trapezoid)
# Parabolic
assert len(bed_shape) == self.nx
self.bed_shape = bed_shape.copy()
self._sqrt_bed = np.sqrt(bed_shape)
# Trapeze
assert len(lambdas) == self.nx
assert len(is_trapezoid) == self.nx
self._lambdas = lambdas.copy()
self._ptrap = np.where(is_trapezoid)[0]
self.is_trapezoid = is_trapezoid
self.is_rectangular = self.is_trapezoid & (self._lambdas == 0)
# Sanity
self.bed_shape[is_trapezoid] = np.nan
self._lambdas[~is_trapezoid] = np.nan
# Here we have to compute the widths out of section and lambda
thick = surface_h - bed_h
with np.errstate(divide='ignore', invalid='ignore'):
self._w0_m = section / thick - lambdas * thick / 2
assert np.all(section >= 0)
need_w = (section == 0) & is_trapezoid
if np.any(need_w):
if widths_m is None:
raise ValueError('We need a non-zero section for trapezoid '
'shapes unless you provide widths_m.')
self._w0_m[need_w] = widths_m[need_w]
self._w0_m[~is_trapezoid] = np.nan
if (np.any(self._w0_m[self._ptrap] <= 0) or
np.any(~np.isfinite(self._w0_m[self._ptrap]))):
raise ValueError('Trapezoid beds need to have origin widths > 0.')
assert np.all(self.bed_shape[~is_trapezoid] > 0)
self._prec = is_trapezoid & (lambdas == 0)
assert np.allclose(section, self.section)
@property
def widths_m(self):
"""Compute the widths out of H and shape"""
out = np.sqrt(4*self.thick/self.bed_shape)
if self._do_trapeze:
out[self._ptrap] = (self._w0_m[self._ptrap] +
self._lambdas[self._ptrap] *
self.thick[self._ptrap])
return out
@property
def section(self):
out = 2./3. * self.widths_m * self.thick
if self._do_trapeze:
out[self._ptrap] = ((self.widths_m[self._ptrap] +
self._w0_m[self._ptrap]) / 2 *
self.thick[self._ptrap])
return out
@section.setter
def section(self, val):
out = (0.75 * val * self._sqrt_bed)**(2./3.)
if self._do_trapeze:
b = 2 * self._w0_m[self._ptrap]
a = 2 * self._lambdas[self._ptrap]
with np.errstate(divide='ignore', invalid='ignore'):
out[self._ptrap] = ((np.sqrt(b ** 2 + 4 * a * val[self._ptrap])
- b) / a)
out[self._prec] = val[self._prec] / self._w0_m[self._prec]
self.thick = out
@utils.lazy_property
def shape_str(self):
"""The bed shape in text (for debug and other things)"""
out = np.repeat('rectangular', self.nx)
out[~ self.is_trapezoid] = 'parabolic'
out[self.is_trapezoid & ~ self.is_rectangular] = 'trapezoid'
return out
def _add_attrs_to_dataset(self, ds):
"""Add bed specific parameters."""
ds['section'] = (['x'], self.section)
ds['bed_shape'] = (['x'], self.bed_shape)
ds['is_trapezoid'] = (['x'], self.is_trapezoid)
ds['widths_m'] = (['x'], self._w0_m)
ds['lambdas'] = (['x'], self._lambdas)
[docs]
class FlowlineModel(object):
"""Interface to OGGM's flowline models"""
[docs]
def __init__(self, flowlines, mb_model=None, y0=0., glen_a=None,
fs=None, inplace=False, smooth_trib_influx=True,
is_tidewater=False, is_lake_terminating=False,
mb_elev_feedback='annual', check_for_boundaries=None,
water_level=None, required_model_steps='monthly'):
"""Create a new flowline model from the flowlines and a MB model.
Parameters
----------
flowlines : list
a list of :py:class:`oggm.Flowline` instances, sorted by order
mb_model : :py:class:`oggm.core.massbalance.MassBalanceModel`
the MB model to use
y0 : int
the starting year of the simulation
glen_a : float
glen's parameter A
fs: float
sliding parameter
inplace : bool
whether or not to make a copy of the flowline objects for the run
setting to True implies that your objects will be modified at run
time by the model (can help to spare memory)
smooth_trib_influx : bool
whether to smooth the mass influx from the incoming tributary.
The default is to use a gaussian kernel on a 9 grid points
window.
is_tidewater: bool, default: False
is this a tidewater glacier?
is_lake_terminating: bool, default: False
is this a lake terminating glacier?
mb_elev_feedback : str, default: 'annual'
'never', 'always', 'annual', or 'monthly': how often the
mass balance should be recomputed from the mass balance model.
'Never' is equivalent to 'annual' but without elevation feedback
at all (the heights are taken from the first call).
check_for_boundaries : bool
whether the model should raise an error when the glacier exceeds
the domain boundaries. The default is to follow
PARAMS['error_when_glacier_reaches_boundaries']
required_model_steps : str
some Flowline models have an adaptive time stepping scheme, which
is randomly taking steps towards the goal of a "run_until". The
default ('monthly') makes sure that the model results are
consistent whether the users want data at monthly or annual
timesteps by forcing the model to land on monthly steps even if
only annual updates are required. You may want to change this
for optimisation reasons for models that don't require adaptive
steps (for example the deltaH method).
"""
self.is_tidewater = is_tidewater
self.is_lake_terminating = is_lake_terminating
self.is_marine_terminating = is_tidewater and not is_lake_terminating
self.water_level = 0 if water_level is None else water_level
# Mass balance
self.mb_elev_feedback = mb_elev_feedback.lower()
if self.mb_elev_feedback in ['never', 'annual']:
self.mb_step = 'annual'
elif self.mb_elev_feedback in ['always', 'monthly']:
self.mb_step = 'monthly'
self.mb_model = mb_model
# Defaults
if glen_a is None:
glen_a = cfg.PARAMS['glen_a']
if fs is None:
fs = cfg.PARAMS['fs']
self.glen_a = glen_a
self.fs = fs
self.glen_n = cfg.PARAMS['glen_n']
self.rho = cfg.PARAMS['ice_density']
if check_for_boundaries is None:
check_for_boundaries = cfg.PARAMS[('error_when_glacier_reaches_'
'boundaries')]
self.check_for_boundaries = check_for_boundaries
# we keep glen_a as input, but for optimisation we stick to "fd"
self._fd = 2. / (cfg.PARAMS['glen_n']+2) * self.glen_a
# Calving shenanigans
self.calving_m3_since_y0 = 0. # total calving since time y0
self.calving_rate_myr = 0.
# Time
if required_model_steps not in ['annual', 'monthly']:
raise InvalidParamsError('required_model_steps needs to be of '
'`annual` or `monthly`.')
self.required_model_steps = required_model_steps
self.y0 = None
self.t = None
self.reset_y0(y0)
self.fls = None
self._tributary_indices = None
self.reset_flowlines(flowlines, inplace=inplace,
smooth_trib_influx=smooth_trib_influx)
@property
def mb_model(self):
return self._mb_model
@mb_model.setter
def mb_model(self, value):
# We need a setter because the MB func is stored as an attr too
_mb_call = None
if value:
if self.mb_elev_feedback in ['always', 'monthly']:
_mb_call = value.get_monthly_mb
elif self.mb_elev_feedback in ['annual', 'never']:
_mb_call = value.get_annual_mb
else:
raise ValueError('mb_elev_feedback not understood')
self._mb_model = value
self._mb_call = _mb_call
self._mb_current_date = None
self._mb_current_out = dict()
self._mb_current_heights = dict()
def reset_y0(self, y0):
"""Reset the initial model time"""
self.y0 = y0
self.t = 0
def reset_flowlines(self, flowlines, inplace=False,
smooth_trib_influx=True):
"""Reset the initial model flowlines"""
if not inplace:
flowlines = copy.deepcopy(flowlines)
try:
len(flowlines)
except TypeError:
flowlines = [flowlines]
self.fls = flowlines
# list of tributary coordinates and stuff
trib_ind = []
for fl in self.fls:
# Important also
fl.water_level = self.water_level
if fl.flows_to is None:
trib_ind.append((None, None, None, None))
continue
idl = self.fls.index(fl.flows_to)
ide = fl.flows_to_indice
if not smooth_trib_influx:
gk = 1
id0 = ide
id1 = ide+1
elif fl.flows_to.nx >= 9:
gk = GAUSSIAN_KERNEL[9]
id0 = ide-4
id1 = ide+5
elif fl.flows_to.nx >= 7:
gk = GAUSSIAN_KERNEL[7]
id0 = ide-3
id1 = ide+4
elif fl.flows_to.nx >= 5:
gk = GAUSSIAN_KERNEL[5]
id0 = ide-2
id1 = ide+3
trib_ind.append((idl, id0, id1, gk))
self._tributary_indices = trib_ind
@property
def yr(self):
return self.y0 + self.t / SEC_IN_YEAR
@property
def area_m2(self):
return np.sum([f.area_m2 for f in self.fls])
@property
def volume_m3(self):
return np.sum([f.volume_m3 for f in self.fls])
@property
def volume_km3(self):
return self.volume_m3 * 1e-9
@property
def volume_bsl_m3(self):
return np.sum([f.volume_bsl_m3 for f in self.fls])
@property
def volume_bsl_km3(self):
return self.volume_bsl_m3 * 1e-9
@property
def volume_bwl_m3(self):
return np.sum([f.volume_bwl_m3 for f in self.fls])
@property
def volume_bwl_km3(self):
return self.volume_bwl_m3 * 1e-9
@property
def area_km2(self):
return self.area_m2 * 1e-6
@property
def length_m(self):
return self.fls[-1].length_m
def get_mb(self, heights, year=None, fl_id=None, fls=None):
"""Get the mass balance at the requested height and time.
Optimized so that no mb model call is necessary at each step.
"""
# Do we even have to optimise?
if self.mb_elev_feedback == 'always':
return self._mb_call(heights, year=year, fl_id=fl_id, fls=fls)
# Ok, user asked for it
if fl_id is None:
raise ValueError('Need fls_id')
if self.mb_elev_feedback == 'never':
# The very first call we take the heights
if fl_id not in self._mb_current_heights:
# We need to reset just this tributary
self._mb_current_heights[fl_id] = heights
# All calls we replace
heights = self._mb_current_heights[fl_id]
date = utils.floatyear_to_date(year)
if self.mb_elev_feedback in ['annual', 'never']:
# ignore month changes
date = (date[0], date[0])
if self._mb_current_date == date:
if fl_id not in self._mb_current_out:
# We need to reset just this tributary
self._mb_current_out[fl_id] = self._mb_call(heights,
year=year,
fl_id=fl_id,
fls=fls)
else:
# We need to reset all
self._mb_current_date = date
self._mb_current_out = dict()
self._mb_current_out[fl_id] = self._mb_call(heights,
year=year,
fl_id=fl_id,
fls=fls)
return self._mb_current_out[fl_id]
def to_geometry_netcdf(self, path):
"""Creates a netcdf group file storing the state of the model."""
flows_to_id = []
for trib in self._tributary_indices:
flows_to_id.append(trib[0] if trib[0] is not None else -1)
ds = xr.Dataset()
try:
ds.attrs['description'] = 'OGGM model output'
ds.attrs['oggm_version'] = __version__
ds.attrs['calendar'] = '365-day no leap'
ds.attrs['creation_date'] = strftime("%Y-%m-%d %H:%M:%S", gmtime())
ds['flowlines'] = ('flowlines', np.arange(len(flows_to_id)))
ds['flows_to_id'] = ('flowlines', flows_to_id)
ds.to_netcdf(path)
for i, fl in enumerate(self.fls):
ds = fl.to_geometry_dataset()
ds.to_netcdf(path, 'a', group='fl_{}'.format(i))
finally:
ds.close()
def check_domain_end(self):
"""Returns False if the glacier reaches the domains bound."""
return np.isclose(self.fls[-1].thick[-1], 0)
def step(self, dt):
"""Advance the numerical simulation of one single step.
Important: the step dt is a maximum boundary that is *not* guaranteed
to be met if dt is too large for the underlying numerical
implementation. However, ``step(dt)`` should never cross the desired
time step, i.e. if dt is small enough to ensure stability, step
should match it.
The caller will know how much has been actually advanced by looking
at the output of ``step()`` or by monitoring ``self.t`` or `self.yr``
Parameters
----------
dt : float
the step length in seconds
Returns
-------
the actual dt chosen by the numerical implementation. Guaranteed to
be dt or lower.
"""
raise NotImplementedError
def run_until(self, y1):
"""Runs the model from the current year up to a given year date y1.
This function runs the model for the time difference y1-self.y0
If self.y0 has not been specified at some point, it is 0 and y1 will
be the time span in years to run the model for.
Parameters
----------
y1 : float
Upper time span for how long the model should run
"""
if self.required_model_steps == 'monthly':
# We force timesteps to monthly frequencies for consistent results
# among use cases (monthly or yearly output) and also to prevent
# "too large" steps in the adaptive scheme.
ts = utils.monthly_timeseries(self.yr, y1)
# Add the last date to be sure we end on it - implementations
# of `step()` and of the loop below should not run twice anyways
ts = np.append(ts, y1)
else:
ts = np.arange(int(self.yr), int(y1+1))
# Loop over the steps we want to meet
for y in ts:
t = (y - self.y0) * SEC_IN_YEAR
# because of CFL, step() doesn't ensure that the end date is met
# lets run the steps until we reach our desired date
while self.t < t:
self.step(t - self.t)
# Check for domain bounds
if self.check_for_boundaries:
if self.fls[-1].thick[-1] > 10:
raise RuntimeError('Glacier exceeds domain boundaries, '
'at year: {}'.format(self.yr))
# Check for nans
for fl in self.fls:
if np.any(~np.isfinite(fl.thick)):
raise FloatingPointError('nan in numerical solution, '
'at year: {}'.format(self.yr))
def run_until_and_store(self, y1,
diag_path=None,
fl_diag_path=False,
geom_path=False,
store_monthly_step=None,
stop_criterion=None,
fixed_geometry_spinup_yr=None,
dynamic_spinup_min_ice_thick=None,
):
"""Runs the model and returns intermediate steps in xarray datasets.
This function repeatedly calls FlowlineModel.run_until for either
monthly or yearly time steps up till the upper time boundary y1.
Parameters
----------
y1 : int
Upper time span for how long the model should run (needs to be
a full year)
diag_path : str
Path and filename where to store the glacier-wide diagnostics
dataset (length, area, volume, etc.) as controlled by
cfg.PARAMS['store_diagnostic_variables'].
The default (None) is to not store the dataset to disk but return
the dataset to the user after execution.
fl_diag_path : str, None or bool
Path and filename where to store the model diagnostics along the
flowline(s).
geom_path : str, None or bool
Path and filename where to store the model geometry dataset. This
dataset contains all necessary info to retrieve the full glacier
geometry after the run, with a FileModel. This is stored
on an annual basis and can be used to restart a run from a
past simulation's geometry ("restart file").
The default (False) prevents creating this dataset altogether
(for optimisation purposes).
Set this to None to not store the dataset to disk but return
the dataset to the user after execution.
store_monthly_step : Bool
If True (False) model diagnostics will be stored monthly (yearly).
If unspecified, we follow the update of the MB model, which
defaults to yearly (see __init__).
stop_criterion : func
a function evaluating the model state (and possibly evolution over
time), and deciding when to stop the simulation. Its signature
should look like:
stop, new_state = stop_criterion(model, previous_state)
where stop is a bool, and new_state a container (likely: dict)
initialized by the function itself on the first call (previous_state
can and should be None on the first call). See
`zero_glacier_stop_criterion` for an example.
fixed_geometry_spinup_yr : int
if set to an integer, the model will artificially prolongate
all outputs of run_until_and_store to encompass all time stamps
starting from the chosen year. The only output affected are the
glacier wide diagnostic files - all other outputs are set
to constants during "spinup"
dynamic_spinup_min_ice_thick : float or None
if set to a float, additional variables are saved which are useful
in combination with the dynamic spinup. In particular only grid
points with a minimum ice thickness are considered for the total
area or the total volume. This is useful to smooth out yearly
fluctuations when matching to observations. The names of this new
variables include the suffix _min_h (e.g. 'area_m2_min_h')
Returns
-------
geom_ds : xarray.Dataset or None
stores the entire glacier geometry. It is useful to visualize the
glacier geometry or to restart a new run from a modelled geometry.
The glacier state is stored at the beginning of each hydrological
year (not in between in order to spare disk space).
diag_ds : xarray.Dataset
stores a few diagnostic variables such as the volume, area, length
and ELA of the glacier.
"""
if int(y1) != y1:
raise InvalidParamsError('run_until_and_store only accepts '
'integer year dates.')
if not self.mb_model.hemisphere:
raise InvalidParamsError('run_until_and_store needs a '
'mass balance model with an unambiguous '
'hemisphere.')
# Do we have a spinup?
do_fixed_spinup = fixed_geometry_spinup_yr is not None
y0 = fixed_geometry_spinup_yr if do_fixed_spinup else self.yr
# Do we need to create a geometry or flowline diagnostics dataset?
do_geom = geom_path is None or geom_path
do_fl_diag = fl_diag_path is None or fl_diag_path
# time
yearly_time = np.arange(np.floor(y0), np.floor(y1)+1)
if store_monthly_step is None:
store_monthly_step = self.mb_step == 'monthly'
if store_monthly_step:
monthly_time = utils.monthly_timeseries(y0, y1)
else:
monthly_time = np.arange(np.floor(y0), np.floor(y1)+1)
yrs, months = utils.floatyear_to_date(monthly_time)
sm = cfg.PARAMS['hydro_month_' + self.mb_model.hemisphere]
hyrs, hmonths = utils.calendardate_to_hydrodate(yrs, months,
start_month=sm)
# init output
if geom_path:
self.to_geometry_netcdf(geom_path)
ny = len(yearly_time)
if ny == 1:
yrs = [yrs]
hyrs = [hyrs]
months = [months]
hmonths = [hmonths]
nm = len(monthly_time)
if do_geom or do_fl_diag:
sects = [(np.zeros((ny, fl.nx)) * np.nan) for fl in self.fls]
widths = [(np.zeros((ny, fl.nx)) * np.nan) for fl in self.fls]
buckets = [np.zeros(ny) for _ in self.fls]
# Diagnostics dataset
diag_ds = xr.Dataset()
# Global attributes
diag_ds.attrs['description'] = 'OGGM model output'
diag_ds.attrs['oggm_version'] = __version__
diag_ds.attrs['calendar'] = '365-day no leap'
diag_ds.attrs['creation_date'] = strftime("%Y-%m-%d %H:%M:%S",
gmtime())
diag_ds.attrs['water_level'] = self.water_level
diag_ds.attrs['glen_a'] = self.glen_a
diag_ds.attrs['fs'] = self.fs
# Add MB model attributes
diag_ds.attrs['mb_model_class'] = self.mb_model.__class__.__name__
for k, v in self.mb_model.__dict__.items():
if np.isscalar(v) and not k.startswith('_'):
diag_ds.attrs['mb_model_{}'.format(k)] = v
# Coordinates
diag_ds.coords['time'] = ('time', monthly_time)
diag_ds.coords['calendar_year'] = ('time', yrs)
diag_ds.coords['calendar_month'] = ('time', months)
diag_ds.coords['hydro_year'] = ('time', hyrs)
diag_ds.coords['hydro_month'] = ('time', hmonths)
diag_ds['time'].attrs['description'] = 'Floating year'
diag_ds['calendar_year'].attrs['description'] = 'Calendar year'
diag_ds['calendar_month'].attrs['description'] = 'Calendar month'
diag_ds['hydro_year'].attrs['description'] = 'Hydrological year'
diag_ds['hydro_month'].attrs['description'] = 'Hydrological month'
# Variables and attributes
ovars = cfg.PARAMS['store_diagnostic_variables']
if 'volume' in ovars:
diag_ds['volume_m3'] = ('time', np.zeros(nm) * np.nan)
diag_ds['volume_m3'].attrs['description'] = 'Total glacier volume'
diag_ds['volume_m3'].attrs['unit'] = 'm 3'
if 'volume_bsl' in ovars:
diag_ds['volume_bsl_m3'] = ('time', np.zeros(nm) * np.nan)
diag_ds['volume_bsl_m3'].attrs['description'] = ('Glacier volume '
'below '
'sea-level')
diag_ds['volume_bsl_m3'].attrs['unit'] = 'm 3'
if 'volume_bwl' in ovars:
diag_ds['volume_bwl_m3'] = ('time', np.zeros(nm) * np.nan)
diag_ds['volume_bwl_m3'].attrs['description'] = ('Glacier volume '
'below '
'water-level')
diag_ds['volume_bwl_m3'].attrs['unit'] = 'm 3'
if 'area' in ovars:
diag_ds['area_m2'] = ('time', np.zeros(nm) * np.nan)
diag_ds['area_m2'].attrs['description'] = 'Total glacier area'
diag_ds['area_m2'].attrs['unit'] = 'm 2'
if dynamic_spinup_min_ice_thick is None:
dynamic_spinup_min_ice_thick = cfg.PARAMS['dynamic_spinup_min_ice_thick']
if 'area_min_h' in ovars:
# filled with a value if dynamic_spinup_min_ice_thick is not None
diag_ds['area_m2_min_h'] = ('time', np.zeros(nm) * np.nan)
diag_ds['area_m2_min_h'].attrs['description'] = \
f'Total glacier area of gridpoints with a minimum ice' \
f'thickness of {dynamic_spinup_min_ice_thick} m'
diag_ds['area_m2_min_h'].attrs['unit'] = 'm 2'
if 'length' in ovars:
diag_ds['length_m'] = ('time', np.zeros(nm) * np.nan)
diag_ds['length_m'].attrs['description'] = 'Glacier length'
diag_ds['length_m'].attrs['unit'] = 'm'
if 'calving' in ovars:
diag_ds['calving_m3'] = ('time', np.zeros(nm) * np.nan)
diag_ds['calving_m3'].attrs['description'] = ('Total accumulated '
'calving flux')
diag_ds['calving_m3'].attrs['unit'] = 'm 3'
if 'calving_rate' in ovars:
diag_ds['calving_rate_myr'] = ('time', np.zeros(nm) * np.nan)
diag_ds['calving_rate_myr'].attrs['description'] = 'Calving rate'
diag_ds['calving_rate_myr'].attrs['unit'] = 'm yr-1'
for gi in range(10):
vn = f'terminus_thick_{gi}'
if vn in ovars:
diag_ds[vn] = ('time', np.zeros(nm) * np.nan)
diag_ds[vn].attrs['description'] = ('Thickness of grid point '
f'{gi} from terminus.')
diag_ds[vn].attrs['unit'] = 'm'
if do_fixed_spinup:
is_spinup_time = monthly_time < self.yr
diag_ds['is_fixed_geometry_spinup'] = ('time', is_spinup_time)
desc = 'Part of the series which are spinup'
diag_ds['is_fixed_geometry_spinup'].attrs['description'] = desc
diag_ds['is_fixed_geometry_spinup'].attrs['unit'] = '-'
fl_diag_dss = None
if do_fl_diag:
# Time invariant datasets
fl_diag_dss = [fl.to_diagnostics_dataset() for fl in self.fls]
# Global attributes
for ds in fl_diag_dss:
ds.attrs['description'] = 'OGGM model output'
ds.attrs['oggm_version'] = __version__
ds.attrs['calendar'] = '365-day no leap'
ds.attrs['creation_date'] = strftime("%Y-%m-%d %H:%M:%S", gmtime())
ds.attrs['water_level'] = self.water_level
ds.attrs['glen_a'] = self.glen_a
ds.attrs['fs'] = self.fs
# Add MB model attributes
ds.attrs['mb_model_class'] = self.mb_model.__class__.__name__
for k, v in self.mb_model.__dict__.items():
if np.isscalar(v) and not k.startswith('_'):
if type(v) is bool:
v = str(v)
ds.attrs['mb_model_{}'.format(k)] = v
# Coordinates
ds.coords['time'] = yearly_time
ds['time'].attrs['description'] = 'Floating hydrological year'
# Variables and attributes
ovars_fl = cfg.PARAMS['store_fl_diagnostic_variables']
if 'volume' not in ovars_fl or 'area' not in ovars_fl:
raise InvalidParamsError('Flowline diagnostics need at least '
'volume and area as output.')
for ds, sect, width, bucket in zip(fl_diag_dss, sects, widths, buckets):
if 'volume' in ovars_fl:
ds['volume_m3'] = (('time', 'dis_along_flowline'), sect)
ds['volume_m3'].attrs['description'] = 'Section volume'
ds['volume_m3'].attrs['unit'] = 'm 3'
if 'volume_bsl' in ovars_fl:
ds['volume_bsl_m3'] = (('time', 'dis_along_flowline'), sect * 0)
ds['volume_bsl_m3'].attrs['description'] = 'Section volume below sea level'
ds['volume_bsl_m3'].attrs['unit'] = 'm 3'
if 'volume_bwl' in ovars_fl:
ds['volume_bwl_m3'] = (('time', 'dis_along_flowline'), sect * 0)
ds['volume_bwl_m3'].attrs['description'] = 'Section volume below water level'
ds['volume_bwl_m3'].attrs['unit'] = 'm 3'
if 'area' in ovars_fl:
ds['area_m2'] = (('time', 'dis_along_flowline'), width)
ds['area_m2'].attrs['description'] = 'Section area'
ds['area_m2'].attrs['unit'] = 'm 2'
if 'thickness' in ovars_fl:
ds['thickness_m'] = (('time', 'dis_along_flowline'), width * np.nan)
ds['thickness_m'].attrs['description'] = 'Section thickness'
ds['thickness_m'].attrs['unit'] = 'm'
if 'ice_velocity' in ovars_fl:
if not (hasattr(self, '_surf_vel_fac') or hasattr(self, 'u_stag')):
raise InvalidParamsError('This flowline model does not seem '
'to be able to provide surface '
'velocities.')
ds['ice_velocity_myr'] = (('time', 'dis_along_flowline'), width * np.nan)
ds['ice_velocity_myr'].attrs['description'] = 'Ice velocity at the surface'
ds['ice_velocity_myr'].attrs['unit'] = 'm yr-1'
if 'calving_bucket' in ovars_fl:
ds['calving_bucket_m3'] = (('time',), bucket)
desc = 'Flowline calving bucket (volume not yet calved)'
ds['calving_bucket_m3'].attrs['description'] = desc
ds['calving_bucket_m3'].attrs['unit'] = 'm 3'
if do_fixed_spinup:
ds['is_fixed_geometry_spinup'] = ('time', is_spinup_time)
desc = 'Part of the series which are spinup'
ds['is_fixed_geometry_spinup'].attrs['description'] = desc
ds['is_fixed_geometry_spinup'].attrs['unit'] = '-'
if 'flux_divergence' in ovars_fl:
# We need dhdt and climatic_mb to calculate divergence
if 'dhdt' not in ovars_fl:
ovars_fl.append('dhdt')
if 'climatic_mb' not in ovars_fl:
ovars_fl.append('climatic_mb')
ds['flux_divergence_myr'] = (('time', 'dis_along_flowline'),
width * np.nan)
desc = 'Ice-flux divergence'
ds['flux_divergence_myr'].attrs['description'] = desc
ds['flux_divergence_myr'].attrs['unit'] = 'm yr-1'
if 'climatic_mb' in ovars_fl:
# We need dhdt to define where to calculate climatic_mb
if 'dhdt' not in ovars_fl:
ovars_fl.append('dhdt')
ds['climatic_mb_myr'] = (('time', 'dis_along_flowline'),
width * np.nan)
desc = 'Climatic mass balance forcing'
ds['climatic_mb_myr'].attrs['description'] = desc
ds['climatic_mb_myr'].attrs['unit'] = 'm yr-1'
# needed for the calculation of mb at start of period
surface_h_previous = {}
for fl_id, fl in enumerate(self.fls):
surface_h_previous[fl_id] = fl.surface_h
if 'dhdt' in ovars_fl:
ds['dhdt_myr'] = (('time', 'dis_along_flowline'),
width * np.nan)
desc = 'Thickness change'
ds['dhdt_myr'].attrs['description'] = desc
ds['dhdt_myr'].attrs['unit'] = 'm yr-1'
# needed for the calculation of dhdt
thickness_previous_dhdt = {}
for fl_id, fl in enumerate(self.fls):
thickness_previous_dhdt[fl_id] = fl.thick
# First deal with spinup (we compute volume change only)
if do_fixed_spinup:
spinup_vol = monthly_time * 0
for fl_id, fl in enumerate(self.fls):
h = fl.surface_h
a = fl.widths_m * fl.dx_meter
a[fl.section <= 0] = 0
for j, yr in enumerate(monthly_time[is_spinup_time]):
smb = self.get_mb(h, year=yr, fl_id=fl_id, fls=self.fls)
spinup_vol[j] -= np.sum(smb * a) # per second and minus because backwards
# per unit time
dt = (monthly_time[1:] - monthly_time[:-1]) * cfg.SEC_IN_YEAR
spinup_vol[:-1] = spinup_vol[:-1] * dt
spinup_vol = np.cumsum(spinup_vol[::-1])[::-1]
# Run
j = 0
prev_state = None # for the stopping criterion
for i, (yr, mo) in enumerate(zip(monthly_time, months)):
if yr > self.yr:
# Here we model run - otherwise (for spinup) we
# constantly store the same data
self.run_until(yr)
# Glacier geometry
if (do_geom or do_fl_diag) and mo == 1:
for s, w, b, fl in zip(sects, widths, buckets, self.fls):
s[j, :] = fl.section
w[j, :] = fl.widths_m
if self.is_tidewater:
try:
b[j] = fl.calving_bucket_m3
except AttributeError:
pass
# Flowline diagnostics
if do_fl_diag:
for fl_id, (ds, fl) in enumerate(zip(fl_diag_dss, self.fls)):
# area and volume are already being taken care of above
if 'thickness' in ovars_fl:
ds['thickness_m'].data[j, :] = fl.thick
if 'volume_bsl' in ovars_fl:
ds['volume_bsl_m3'].data[j, :] = fl.volume_bsl_m3
if 'volume_bwl' in ovars_fl:
ds['volume_bwl_m3'].data[j, :] = fl.volume_bwl_m3
if 'ice_velocity' in ovars_fl and (yr > self.y0):
# Velocity can only be computed with dynamics
var = self.u_stag[fl_id]
val = (var[1:fl.nx + 1] + var[:fl.nx]) / 2 * self._surf_vel_fac
ds['ice_velocity_myr'].data[j, :] = val * cfg.SEC_IN_YEAR
if 'dhdt' in ovars_fl and (yr > self.y0):
# dhdt can only be computed after one year
val = fl.thick - thickness_previous_dhdt[fl_id]
ds['dhdt_myr'].data[j, :] = val
thickness_previous_dhdt[fl_id] = fl.thick
if 'climatic_mb' in ovars_fl and (yr > self.y0):
# yr - 1 to use the mb which lead to the current
# state, also using previous surface height
val = self.get_mb(surface_h_previous[fl_id],
self.yr - 1,
fl_id=fl_id)
# only save climatic mb where dhdt is non zero,
# isclose for avoiding numeric represention artefacts
dhdt_zero = np.isclose(ds['dhdt_myr'].data[j, :],
0.)
ds['climatic_mb_myr'].data[j, :] = np.where(
dhdt_zero,
0.,
val * cfg.SEC_IN_YEAR)
surface_h_previous[fl_id] = fl.surface_h
if 'flux_divergence' in ovars_fl and (yr > self.y0):
# calculated after the formula dhdt = mb + flux_div
val = ds['dhdt_myr'].data[j, :] - ds['climatic_mb_myr'].data[j, :]
# special treatment for retreating: If the glacier
# terminus is getting ice free it means the
# climatic mass balance is more negative than the
# available ice to melt. In this case we can not
# calculate the flux divergence with this method
# exactly, we just can say it was smaller to
# compensate the very negative climatic mb.
# To avoid large spikes at the terminus in the
# calculated flux divergence we smooth this values
# with an (arbitrary) factor of 0.1.
has_become_ice_free = np.logical_and(
np.isclose(fl.thick, 0.),
ds['dhdt_myr'].data[j, :] < 0.
)
fac = np.where(has_become_ice_free, 0.1, 1.)
ds['flux_divergence_myr'].data[j, :] = val * fac
# j is the yearly index in case we have monthly output
# we have to count it ourselves
j += 1
# Diagnostics
if 'volume' in ovars:
diag_ds['volume_m3'].data[i] = self.volume_m3
if 'area' in ovars:
diag_ds['area_m2'].data[i] = self.area_m2
if 'length' in ovars:
diag_ds['length_m'].data[i] = self.length_m
if 'calving' in ovars:
diag_ds['calving_m3'].data[i] = self.calving_m3_since_y0
if 'calving_rate' in ovars:
diag_ds['calving_rate_myr'].data[i] = self.calving_rate_myr
if 'volume_bsl' in ovars:
diag_ds['volume_bsl_m3'].data[i] = self.volume_bsl_m3
if 'volume_bwl' in ovars:
diag_ds['volume_bwl_m3'].data[i] = self.volume_bwl_m3
if 'area_min_h' in ovars:
diag_ds['area_m2_min_h'].data[i] = np.sum([np.sum(
fl.bin_area_m2[fl.thick > dynamic_spinup_min_ice_thick])
for fl in self.fls])
# Terminus thick is a bit more logic
ti = None
for gi in range(10):
vn = f'terminus_thick_{gi}'
if vn in ovars:
if ti is None:
ti = self.fls[-1].terminus_index
diag_ds[vn].data[i] = self.fls[-1].thick[ti - gi]
# Decide if we continue
if stop_criterion is not None:
stop, prev_state = stop_criterion(self, prev_state)
if stop:
break
# to datasets
geom_ds = None
if do_geom:
geom_ds = []
for (s, w, b) in zip(sects, widths, buckets):
ds = xr.Dataset()
ds.attrs['description'] = 'OGGM model output'
ds.attrs['oggm_version'] = __version__
ds.attrs['calendar'] = '365-day no leap'
ds.attrs['creation_date'] = strftime("%Y-%m-%d %H:%M:%S",
gmtime())
ds.attrs['water_level'] = self.water_level
ds.attrs['glen_a'] = self.glen_a
ds.attrs['fs'] = self.fs
# Add MB model attributes
ds.attrs['mb_model_class'] = self.mb_model.__class__.__name__
for k, v in self.mb_model.__dict__.items():
if np.isscalar(v) and not k.startswith('_'):
ds.attrs['mb_model_{}'.format(k)] = v
ds.coords['time'] = yearly_time
ds['time'].attrs['description'] = 'Floating hydrological year'
varcoords = OrderedDict(time=('time', yearly_time),
year=('time', yearly_time))
ds['ts_section'] = xr.DataArray(s, dims=('time', 'x'),
coords=varcoords)
ds['ts_width_m'] = xr.DataArray(w, dims=('time', 'x'),
coords=varcoords)
ds['ts_calving_bucket_m3'] = xr.DataArray(b, dims=('time', ),
coords=varcoords)
if stop_criterion is not None:
# Remove probable nans
ds = ds.dropna('time', subset=['ts_section'])
geom_ds.append(ds)
# Add the spinup volume to the diag
if do_fixed_spinup:
# If there is calving we need to trick as well
if 'calving_m3' in diag_ds and np.any(diag_ds['calving_m3'] > 0):
raise NotImplementedError('Calving and fixed_geometry_spinup_yr '
'not implemented yet.')
diag_ds['volume_m3'].data[:] += spinup_vol
if stop_criterion is not None:
# Remove probable nans
diag_ds = diag_ds.dropna('time', subset=['volume_m3'])
# write output?
if do_fl_diag:
# Unit conversions for these
for i, ds in enumerate(fl_diag_dss):
dx = ds.attrs['map_dx'] * ds.attrs['dx']
# No inplace because the other dataset uses them
# These variables are always there (see above)
ds['volume_m3'] = ds['volume_m3'] * dx
ds['area_m2'] = ds['area_m2'].where(ds['volume_m3'] > 0, 0) * dx
if stop_criterion is not None:
# Remove probable nans
fl_diag_dss[i] = ds.dropna('time', subset=['volume_m3'])
# Write out?
if fl_diag_path not in [True, None]:
encode = {}
for v in fl_diag_dss[0]:
encode[v] = {'zlib': True, 'complevel': 5}
# Welcome ds
ds = xr.Dataset()
ds.attrs['description'] = ('OGGM model output on flowlines. '
'Check groups for data.')
ds.attrs['oggm_version'] = __version__
# This is useful to interpret the dataset afterwards
flows_to_id = []
for trib in self._tributary_indices:
flows_to_id.append(trib[0] if trib[0] is not None else -1)
ds['flowlines'] = ('flowlines', np.arange(len(flows_to_id)))
ds['flows_to_id'] = ('flowlines', flows_to_id)
ds.to_netcdf(fl_diag_path, 'w')
for i, ds in enumerate(fl_diag_dss):
ds.to_netcdf(fl_diag_path, 'a', group='fl_{}'.format(i),
encoding=encode)
if do_geom and geom_path not in [True, None]:
encode = {'ts_section': {'zlib': True, 'complevel': 5},
'ts_width_m': {'zlib': True, 'complevel': 5},
}
for i, ds in enumerate(geom_ds):
ds.to_netcdf(geom_path, 'a', group='fl_{}'.format(i),
encoding=encode)
# Add calving to geom file because the FileModel can't infer it
if 'calving_m3' in diag_ds:
diag_ds[['calving_m3']].to_netcdf(geom_path, 'a')
if diag_path not in [True, None]:
diag_ds.to_netcdf(diag_path)
# Decide on what to give back
out = [diag_ds]
if fl_diag_dss is not None:
out.append(fl_diag_dss)
if geom_ds is not None:
out.append(geom_ds)
if len(out) == 1:
out = out[0]
else:
out = tuple(out)
return out
def run_until_equilibrium(self, rate=0.001, ystep=5, max_ite=200):
""" Runs the model until an equilibrium state is reached.
Be careful: This only works for CONSTANT (not time-dependent)
mass balance models.
Otherwise the returned state will not be in equilibrium! Don't try to
calculate an equilibrium state with a RandomMassBalance model!
"""
ite = 0
was_close_zero = 0
t_rate = 1
while (t_rate > rate) and (ite <= max_ite) and (was_close_zero < 5):
ite += 1
v_bef = self.volume_m3
self.run_until(self.yr + ystep)
v_af = self.volume_m3
if np.isclose(v_bef, 0., atol=1):
t_rate = 1
was_close_zero += 1
else:
t_rate = np.abs(v_af - v_bef) / v_bef
if ite > max_ite:
raise RuntimeError('Did not find equilibrium.')
def flux_gate_with_build_up(year, flux_value=None, flux_gate_yr=None):
"""Default scalar flux gate with build up period"""
fac = 1 - (flux_gate_yr - year) / flux_gate_yr
return flux_value * utils.clip_scalar(fac, 0, 1)
def k_calving_law(model, flowline, last_above_wl):
"""Compute calving from the model state using the k-calving law.
Currently this still assumes that the model has an attribute
called "calving_k", which might be changed in the future.
Parameters
----------
model : oggm.core.flowline.FlowlineModel
the model instance calling the function
flowline : oggm.core.flowline.Flowline
the instance of the flowline object on which the calving law is called
last_above_wl : int
the index of the last pixel above water (in case you need to know
where it is).
"""
h = flowline.thick[last_above_wl]
d = h - (flowline.surface_h[last_above_wl] - model.water_level)
k = model.calving_k
q_calving = k * d * h * flowline.widths_m[last_above_wl]
return q_calving
class FluxBasedModel(FlowlineModel):
"""The flowline model used by OGGM in production.
It solves for the SIA along the flowline(s) using a staggered grid. It
computes the *ice flux* between grid points and transports the mass
accordingly (also between flowlines).
This model is numerically less stable than fancier schemes, but it
is fast and works with multiple flowlines of any bed shape (rectangular,
parabolic, trapeze, and any combination of them).
We test that it conserves mass in most cases, but not on very stiff cliffs.
"""
def __init__(self, flowlines, mb_model=None, y0=0., glen_a=None,
fs=0., inplace=False, fixed_dt=None, cfl_number=None,
min_dt=None, flux_gate_thickness=None,
flux_gate=None, flux_gate_build_up=100,
do_kcalving=None, calving_k=None, calving_law=k_calving_law,
calving_use_limiter=None, calving_limiter_frac=None,
water_level=None,
**kwargs):
"""Instantiate the model.
Parameters
----------
flowlines : list
the glacier flowlines
mb_model : MassBalanceModel
the mass balance model
y0 : int
initial year of the simulation
glen_a : float
Glen's creep parameter
fs : float
Oerlemans sliding parameter
inplace : bool
whether or not to make a copy of the flowline objects for the run
setting to True implies that your objects will be modified at run
time by the model (can help to spare memory)
fixed_dt : float
set to a value (in seconds) to prevent adaptive time-stepping.
cfl_number : float
Defaults to cfg.PARAMS['cfl_number'].
For adaptive time stepping (the default), dt is chosen from the
CFL criterion (dt = cfl_number * dx / max_u).
To choose the "best" CFL number we would need a stability
analysis - we used an empirical analysis (see blog post) and
settled on 0.02 for the default cfg.PARAMS['cfl_number'].
min_dt : float
Defaults to cfg.PARAMS['cfl_min_dt'].
At high velocities, time steps can become very small and your
model might run very slowly. In production, it might be useful to
set a limit below which the model will just error.
is_tidewater: bool, default: False
is this a tidewater glacier?
is_lake_terminating: bool, default: False
is this a lake terminating glacier?
mb_elev_feedback : str, default: 'annual'
'never', 'always', 'annual', or 'monthly': how often the
mass balance should be recomputed from the mass balance model.
'Never' is equivalent to 'annual' but without elevation feedback
at all (the heights are taken from the first call).
check_for_boundaries: bool, default: True
raise an error when the glacier grows bigger than the domain
boundaries
flux_gate_thickness : float or array
flux of ice from the left domain boundary (and tributaries).
Units of m of ice thickness. Note that unrealistic values won't be
met by the model, so this is really just a rough guidance.
It's better to use `flux_gate` instead.
flux_gate : float or function or array of floats or array of functions
flux of ice from the left domain boundary (and tributaries)
(unit: m3 of ice per second). If set to a high value, consider
changing the flux_gate_buildup time. You can also provide
a function (or an array of functions) returning the flux
(unit: m3 of ice per second) as a function of time.
This is overridden by `flux_gate_thickness` if provided.
flux_gate_buildup : int
number of years used to build up the flux gate to full value
do_kcalving : bool
switch on the k-calving parameterisation. Ignored if not a
tidewater glacier. Use the option from PARAMS per default
calving_law : func
option to use another calving law. This is a temporary workaround
to test other calving laws, and the system might be improved in
future OGGM versions.
calving_k : float
the calving proportionality constant (units: yr-1). Use the
one from PARAMS per default
calving_use_limiter : bool
whether to switch on the calving limiter on the parameterisation
makes the calving fronts thicker but the model is more stable
calving_limiter_frac : float
limit the front slope to a fraction of the calving front.
"3" means 1/3. Setting it to 0 limits the slope to sea-level.
water_level : float
the water level. It should be zero m a.s.l, but:
- sometimes the frontal elevation is unrealistically high (or low).
- lake terminating glaciers
- other uncertainties
The default is 0. For lake terminating glaciers,
it is inferred from PARAMS['free_board_lake_terminating'].
The best way to set the water level for real glaciers is to use
the same as used for the inversion (this is what
`flowline_model_run` does for you)
"""
super(FluxBasedModel, self).__init__(flowlines, mb_model=mb_model,
y0=y0, glen_a=glen_a, fs=fs,
inplace=inplace,
water_level=water_level,
**kwargs)
self.fixed_dt = fixed_dt
if min_dt is None:
min_dt = cfg.PARAMS['cfl_min_dt']
if cfl_number is None:
cfl_number = cfg.PARAMS['cfl_number']
self.min_dt = min_dt
self.cfl_number = cfl_number
# Calving params
if do_kcalving is None:
do_kcalving = cfg.PARAMS['use_kcalving_for_run']
self.calving_law = calving_law
self.do_calving = do_kcalving and self.is_tidewater
if calving_k is None:
calving_k = cfg.PARAMS['calving_k']
self.calving_k = calving_k / cfg.SEC_IN_YEAR
if calving_use_limiter is None:
calving_use_limiter = cfg.PARAMS['calving_use_limiter']
self.calving_use_limiter = calving_use_limiter
if calving_limiter_frac is None:
calving_limiter_frac = cfg.PARAMS['calving_limiter_frac']
if calving_limiter_frac > 0:
raise NotImplementedError('calving limiter other than 0 not '
'implemented yet')
self.calving_limiter_frac = calving_limiter_frac
# Flux gate
self.flux_gate = utils.tolist(flux_gate, length=len(self.fls))
self.flux_gate_m3_since_y0 = 0.
if flux_gate_thickness is not None:
# Compute the theoretical ice flux from the slope at the top
flux_gate_thickness = utils.tolist(flux_gate_thickness,
length=len(self.fls))
self.flux_gate = []
for fl, fgt in zip(self.fls, flux_gate_thickness):
# We set the thickness to the desired value so that
# the widths work ok
fl = copy.deepcopy(fl)
fl.thick = fl.thick * 0 + fgt
slope = (fl.surface_h[0] - fl.surface_h[1]) / fl.dx_meter
if slope == 0:
raise ValueError('I need a slope to compute the flux')
flux = find_sia_flux_from_thickness(slope,
fl.widths_m[0],
fgt,
shape=fl.shape_str[0],
glen_a=self.glen_a,
fs=self.fs)
self.flux_gate.append(flux)
# convert the floats to function calls
for i, fg in enumerate(self.flux_gate):
if fg is None:
continue
try:
# Do we have a function? If yes all good
fg(self.yr)
except TypeError:
# If not, make one
self.flux_gate[i] = partial(flux_gate_with_build_up,
flux_value=fg,
flux_gate_yr=(flux_gate_build_up +
self.y0))
# Special output
self._surf_vel_fac = (self.glen_n + 2) / (self.glen_n + 1)
# Optim
self.slope_stag = []
self.thick_stag = []
self.section_stag = []
self.u_stag = []
self.shapefac_stag = []
self.flux_stag = []
self.trib_flux = []
for fl, trib in zip(self.fls, self._tributary_indices):
nx = fl.nx
# This is not staggered
self.trib_flux.append(np.zeros(nx))
# We add an additional fake grid point at the end of tributaries
if trib[0] is not None:
nx = fl.nx + 1
# +1 is for the staggered grid
self.slope_stag.append(np.zeros(nx+1))
self.thick_stag.append(np.zeros(nx+1))
self.section_stag.append(np.zeros(nx+1))
self.u_stag.append(np.zeros(nx+1))
self.shapefac_stag.append(np.ones(nx+1)) # beware the ones!
self.flux_stag.append(np.zeros(nx+1))
def step(self, dt):
"""Advance one step."""
# Just a check to avoid useless computations
if dt <= 0:
raise InvalidParamsError('dt needs to be strictly positive')
# Simple container
mbs = []
# Loop over tributaries to determine the flux rate
for fl_id, fl in enumerate(self.fls):
# This is possibly less efficient than zip() but much clearer
trib = self._tributary_indices[fl_id]
slope_stag = self.slope_stag[fl_id]
thick_stag = self.thick_stag[fl_id]
section_stag = self.section_stag[fl_id]
sf_stag = self.shapefac_stag[fl_id]
flux_stag = self.flux_stag[fl_id]
trib_flux = self.trib_flux[fl_id]
u_stag = self.u_stag[fl_id]
flux_gate = self.flux_gate[fl_id]
# Flowline state
surface_h = fl.surface_h
thick = fl.thick
section = fl.section
dx = fl.dx_meter
# If it is a tributary, we use the branch it flows into to compute
# the slope of the last grid point
is_trib = trib[0] is not None
if is_trib:
fl_to = self.fls[trib[0]]
ide = fl.flows_to_indice
surface_h = np.append(surface_h, fl_to.surface_h[ide])
thick = np.append(thick, thick[-1])
section = np.append(section, section[-1])
elif self.do_calving and self.calving_use_limiter:
# We lower the max possible ice deformation
# by clipping the surface slope here. It is completely
# arbitrary but reduces ice deformation at the calving front.
# I think that in essence, it is also partly
# a "calving process", because this ice deformation must
# be less at the calving front. The result is that calving
# front "free boards" are quite high.
# Note that 0 is arbitrary, it could be any value below SL
surface_h = utils.clip_min(surface_h, self.water_level)
# Staggered gradient
slope_stag[0] = 0
slope_stag[1:-1] = (surface_h[0:-1] - surface_h[1:]) / dx
slope_stag[-1] = slope_stag[-2]
# Staggered thick
thick_stag[1:-1] = (thick[0:-1] + thick[1:]) / 2.
thick_stag[[0, -1]] = thick[[0, -1]]
# Staggered velocity (Deformation + Sliding)
# _fd = 2/(N+2) * self.glen_a
N = self.glen_n
rhogh = (self.rho*G*slope_stag)**N
u_stag[:] = (thick_stag**(N+1)) * self._fd * rhogh * sf_stag**N + \
(thick_stag**(N-1)) * self.fs * rhogh
# Staggered section
section_stag[1:-1] = (section[0:-1] + section[1:]) / 2.
section_stag[[0, -1]] = section[[0, -1]]
# Staggered flux rate
flux_stag[:] = u_stag * section_stag
# Add boundary condition
if flux_gate is not None:
flux_stag[0] = flux_gate(self.yr)
# CFL condition
if not self.fixed_dt:
maxu = np.max(np.abs(u_stag))
if maxu > cfg.FLOAT_EPS:
cfl_dt = self.cfl_number * dx / maxu
else:
cfl_dt = dt
# Update dt only if necessary
if cfl_dt < dt:
dt = cfl_dt
if cfl_dt < self.min_dt:
raise RuntimeError(
'CFL error: required time step smaller '
'than the minimum allowed: '
'{:.1f}s vs {:.1f}s. Happening at '
'simulation year {:.1f}, fl_id {}, '
'bin_id {} and max_u {:.3f} m yr-1.'
''.format(cfl_dt, self.min_dt, self.yr, fl_id,
np.argmax(np.abs(u_stag)),
maxu * cfg.SEC_IN_YEAR))
# Since we are in this loop, reset the tributary flux
trib_flux[:] = 0
# We compute MB in this loop, before mass-redistribution occurs,
# so that MB models which rely on glacier geometry to decide things
# (like PyGEM) can do wo with a clean glacier state
mbs.append(self.get_mb(fl.surface_h, self.yr,
fl_id=fl_id, fls=self.fls))
# Time step
if self.fixed_dt:
# change only if step dt is larger than the chosen dt
if self.fixed_dt < dt:
dt = self.fixed_dt
# A second loop for the mass exchange
for fl_id, fl in enumerate(self.fls):
flx_stag = self.flux_stag[fl_id]
trib_flux = self.trib_flux[fl_id]
tr = self._tributary_indices[fl_id]
dx = fl.dx_meter
is_trib = tr[0] is not None
# For these we had an additional grid point
if is_trib:
flx_stag = flx_stag[:-1]
# Mass balance
widths = fl.widths_m
mb = mbs[fl_id]
# Allow parabolic beds to grow
mb = dt * mb * np.where((mb > 0.) & (widths == 0), 10., widths)
# Update section with ice flow and mass balance
new_section = (fl.section + (flx_stag[0:-1] - flx_stag[1:])*dt/dx +
trib_flux*dt/dx + mb)
# Keep positive values only and store
fl.section = utils.clip_min(new_section, 0)
# If we use a flux-gate, store the total volume that came in
self.flux_gate_m3_since_y0 += flx_stag[0] * dt
# Add the last flux to the tributary
# this works because the lines are sorted in order
if is_trib:
# tr tuple: line_index, start, stop, gaussian_kernel
self.trib_flux[tr[0]][tr[1]:tr[2]] += \
utils.clip_min(flx_stag[-1], 0) * tr[3]
# --- The rest is for calving only ---
self.calving_rate_myr = 0.
# If tributary, do calving only if we are not transferring mass
if is_trib and flx_stag[-1] > 0:
continue
# No need to do calving in these cases either
if not self.do_calving or not fl.has_ice():
continue
# We do calving only if the last glacier bed pixel is below water
# (this is to avoid calving elsewhere than at the front)
if fl.bed_h[fl.thick > 0][-1] > self.water_level:
continue
# We do calving only if there is some ice above wl
last_above_wl = np.nonzero((fl.surface_h > self.water_level) &
(fl.thick > 0))[0][-1]
if fl.bed_h[last_above_wl] > self.water_level:
continue
# OK, we're really calving
section = fl.section
# Calving law
q_calving = self.calving_law(self, fl, last_above_wl)
# Add to the bucket and the diagnostics
fl.calving_bucket_m3 += q_calving * dt
self.calving_m3_since_y0 += q_calving * dt
self.calving_rate_myr = (q_calving / section[last_above_wl] *
cfg.SEC_IN_YEAR)
# See if we have ice below sea-water to clean out first
below_sl = (fl.surface_h < self.water_level) & (fl.thick > 0)
to_remove = np.sum(section[below_sl]) * fl.dx_meter
if 0 < to_remove < fl.calving_bucket_m3:
# This is easy, we remove everything
section[below_sl] = 0
fl.calving_bucket_m3 -= to_remove
elif to_remove > 0:
# We can only remove part of if
section[below_sl] = 0
section[last_above_wl+1] = ((to_remove - fl.calving_bucket_m3)
/ fl.dx_meter)
fl.calving_bucket_m3 = 0
# The rest of the bucket might calve an entire grid point (or more?)
vol_last = section[last_above_wl] * fl.dx_meter
while fl.calving_bucket_m3 > vol_last:
fl.calving_bucket_m3 -= vol_last
section[last_above_wl] = 0
# OK check if we need to continue (unlikely)
last_above_wl -= 1
vol_last = section[last_above_wl] * fl.dx_meter
# We update the glacier with our changes
fl.section = section
# Next step
self.t += dt
return dt
def get_diagnostics(self, fl_id=-1):
"""Obtain model diagnostics in a pandas DataFrame.
Velocities in OGGM's FluxBasedModel are sometimes subject to
numerical instabilities. To deal with the issue, you can either
set a smaller ``PARAMS['cfl_number']`` (e.g. 0.01) or smooth the
output a bit, e.g. with ``df.rolling(5, center=True, min_periods=1).mean()``
Parameters
----------
fl_id : int
the index of the flowline of interest, from 0 to n_flowline-1.
Default is to take the last (main) one
Returns
-------
a pandas DataFrame, which index is distance along flowline (m). Units:
- surface_h, bed_h, ice_tick, section_width: m
- section_area: m2
- slope: -
- ice_flux, tributary_flux: m3 of *ice* per second
- ice_velocity: m per second (depth-section integrated)
- surface_ice_velocity: m per second (corrected for surface - simplified)
"""
import pandas as pd
fl = self.fls[fl_id]
nx = fl.nx
df = pd.DataFrame(index=fl.dx_meter * np.arange(nx))
df.index.name = 'distance_along_flowline'
df['surface_h'] = fl.surface_h
df['bed_h'] = fl.bed_h
df['ice_thick'] = fl.thick
df['section_width'] = fl.widths_m
df['section_area'] = fl.section
# Staggered
var = self.slope_stag[fl_id]
df['slope'] = (var[1:nx+1] + var[:nx])/2
var = self.flux_stag[fl_id]
df['ice_flux'] = (var[1:nx+1] + var[:nx])/2
var = self.u_stag[fl_id]
df['ice_velocity'] = (var[1:nx+1] + var[:nx])/2
df['surface_ice_velocity'] = df['ice_velocity'] * self._surf_vel_fac
var = self.shapefac_stag[fl_id]
df['shape_fac'] = (var[1:nx+1] + var[:nx])/2
# Not Staggered
df['tributary_flux'] = self.trib_flux[fl_id]
return df
class MassConservationChecker(FluxBasedModel):
"""This checks if the FluxBasedModel is conserving mass."""
def __init__(self, flowlines, **kwargs):
""" Instantiate.
Parameters
----------
"""
super(MassConservationChecker, self).__init__(flowlines, **kwargs)
self.total_mass = 0.
def step(self, dt):
mbs = []
sections = []
for fl in self.fls:
# Mass balance
widths = fl.widths_m
mb = self.get_mb(fl.surface_h, self.yr, fl_id=id(fl))
mbs.append(mb * widths)
sections.append(np.copy(fl.section))
dx = fl.dx_meter
dt = super(MassConservationChecker, self).step(dt)
for mb, sec in zip(mbs, sections):
mb = dt * mb
# there can't be more negative mb than there is section
# this isn't an exact solution unfortunately
# TODO: exact solution for mass conservation
mb = utils.clip_min(mb, -sec)
self.total_mass += np.sum(mb * dx)
class KarthausModel(FlowlineModel):
"""The actual model"""
def __init__(self, flowlines, mb_model=None, y0=0., glen_a=None, fs=0.,
fixed_dt=None, min_dt=SEC_IN_DAY, max_dt=31*SEC_IN_DAY,
inplace=False, **kwargs):
""" Instantiate.
Parameters
----------
"""
if len(flowlines) > 1:
raise ValueError('Karthaus model does not work with tributaries.')
super(KarthausModel, self).__init__(flowlines, mb_model=mb_model,
y0=y0, glen_a=glen_a, fs=fs,
inplace=inplace, **kwargs)
self.dt_warning = False,
if fixed_dt is not None:
min_dt = fixed_dt
max_dt = fixed_dt
self.min_dt = min_dt
self.max_dt = max_dt
def step(self, dt):
"""Advance one step."""
# Just a check to avoid useless computations
if dt <= 0:
raise InvalidParamsError('dt needs to be strictly positive')
# This is to guarantee a precise arrival on a specific date if asked
min_dt = dt if dt < self.min_dt else self.min_dt
dt = utils.clip_scalar(dt, min_dt, self.max_dt)
fl = self.fls[0]
dx = fl.dx_meter
width = fl.widths_m
thick = fl.thick
MassBalance = self.get_mb(fl.surface_h, self.yr, fl_id=id(fl))
SurfaceHeight = fl.surface_h
# Surface gradient
SurfaceGradient = np.zeros(fl.nx)
SurfaceGradient[1:fl.nx-1] = (SurfaceHeight[2:] -
SurfaceHeight[:fl.nx-2])/(2*dx)
SurfaceGradient[-1] = 0
SurfaceGradient[0] = 0
# Diffusivity
N = self.glen_n
Diffusivity = width * (self.rho*G)**3 * thick**3 * SurfaceGradient**2
Diffusivity *= 2/(N+2) * self.glen_a * thick**2 + self.fs
# on stagger
DiffusivityStaggered = np.zeros(fl.nx)
SurfaceGradientStaggered = np.zeros(fl.nx)
DiffusivityStaggered[1:] = (Diffusivity[:fl.nx-1] + Diffusivity[1:])/2.
DiffusivityStaggered[0] = Diffusivity[0]
SurfaceGradientStaggered[1:] = (SurfaceHeight[1:] -
SurfaceHeight[:fl.nx-1])/dx
SurfaceGradientStaggered[0] = 0
GradxDiff = SurfaceGradientStaggered * DiffusivityStaggered
# Yo
NewIceThickness = np.zeros(fl.nx)
NewIceThickness[:fl.nx-1] = (thick[:fl.nx-1] + (dt/width[0:fl.nx-1]) *
(GradxDiff[1:]-GradxDiff[:fl.nx-1])/dx +
dt * MassBalance[:fl.nx-1])
NewIceThickness[-1] = thick[fl.nx-2]
fl.thick = utils.clip_min(NewIceThickness, 0)
# Next step
self.t += dt
return dt
class SemiImplicitModel(FlowlineModel):
"""Semi implicit flowline model.
It solves the same equation as the FluxBasedModel, but the ice flux q is
implemented as q^t = D^t * (ds/dx)^(t+1).
It supports only a single flowline (no tributaries) with bed shapes
rectangular, trapezoidal or a mixture of both.
"""
def __init__(self, flowlines, mb_model=None, y0=0., glen_a=None, fs=0.,
inplace=False, fixed_dt=None, cfl_number=0.5, min_dt=None,
**kwargs):
"""Instantiate the model.
Parameters
----------
flowlines : list
the glacier flowlines
mb_model : MassBalanceModel
the mass balance model
y0 : int
initial year of the simulation
glen_a : float
Glen's creep parameter
fs : float
Oerlemans sliding parameter
inplace : bool
wether to make a copy of the flowline objects for the run
setting to True implies that your objects will be modified at run
time by the model (can help to spare memory)
fixed_dt : float
set to a value (in seconds) to prevent adaptive time-stepping.
cfl_number : float
For adaptive time stepping (the default), dt is chosen from the
CFL criterion (dt = cfl_number * dx^2 / max(D/w)).
Can be set to higher values compared to the FluxBasedModel.
Default is 0.5, but need further investigation.
min_dt : float
Defaults to cfg.PARAMS['cfl_min_dt'].
At high velocities, time steps can become very small and your
model might run very slowly. In production, it might be useful to
set a limit below which the model will just error.
kwargs : dict
Further keyword arguments for FlowlineModel
"""
super(SemiImplicitModel, self).__init__(flowlines, mb_model=mb_model,
y0=y0, glen_a=glen_a, fs=fs,
inplace=inplace, **kwargs)
if len(self.fls) > 1:
raise ValueError('Implicit model does not work with '
'tributaries.')
# convert pure RectangularBedFlowline to TrapezoidalBedFlowline with
# lambda = 0
if isinstance(self.fls[0], RectangularBedFlowline):
self.fls[0] = TrapezoidalBedFlowline(
line=self.fls[-1].line, dx=self.fls[-1].dx,
map_dx=self.fls[-1].map_dx, surface_h=self.fls[-1].surface_h,
bed_h=self.fls[-1].bed_h, widths=self.fls[-1].widths,
lambdas=0, rgi_id=self.fls[-1].rgi_id,
water_level=self.fls[-1].water_level, gdir=None)
if isinstance(self.fls[0], MixedBedFlowline):
if ~np.all(self.fls[0].is_trapezoid):
raise ValueError('Implicit model only works with a pure '
'trapezoidal flowline! But different lambdas '
'along the flowline possible (lambda=0 is'
'rectangular).')
elif not isinstance(self.fls[0], TrapezoidalBedFlowline):
raise ValueError('Implicit model only works with a pure '
'trapezoidal flowline! But different lambdas '
'along the flowline possible (lambda=0 is'
'rectangular).')
if cfg.PARAMS['use_kcalving_for_run']:
raise NotImplementedError("Calving is not implemented in the"
"SemiImplicitModel! Set "
"cfg.PARAMS['use_kcalving_for_run'] = "
"False or use a FluxBasedModel.")
self.fixed_dt = fixed_dt
if min_dt is None:
min_dt = cfg.PARAMS['cfl_min_dt']
self.min_dt = min_dt
if cfl_number is None:
cfl_number = cfg.PARAMS['cfl_number']
if cfl_number < 0.1:
raise InvalidParamsError("For the SemiImplicitModel you can use "
"cfl numbers in the order of 0.1 - 0.5 "
f"(you set {cfl_number}).")
self.cfl_number = cfl_number
# Special output
self._surf_vel_fac = (self.glen_n + 2) / (self.glen_n + 1)
# optim
nx = self.fls[-1].nx
bed_h_exp = np.concatenate(([self.fls[-1].bed_h[0]],
self.fls[-1].bed_h,
[self.fls[-1].bed_h[-1]]))
self.dbed_h_exp_dx = ((bed_h_exp[1:] - bed_h_exp[:-1]) /
self.fls[0].dx_meter)
self.d_stag = [np.zeros(nx + 1)]
self.d_matrix_banded = np.zeros((3, nx))
w0 = self.fls[0]._w0_m
self.w0_stag = (w0[0:-1] + w0[1:]) / 2
self.rhog = (self.rho * G) ** self.glen_n
# variables needed for the calculation of some diagnostics, this
# calculations are done with @property, because they are not computed
# on the fly during the dynamic run as in FluxBasedModel
self._u_stag = [np.zeros(nx + 1)]
self._flux_stag = [np.zeros(nx + 1)]
self._slope_stag = [np.zeros(nx + 1)]
self._thick_stag = [np.zeros(nx + 1)]
self._section_stag = [np.zeros(nx + 1)]
@property
def slope_stag(self):
slope_stag = self._slope_stag[0]
surface_h = self.fls[0].surface_h
dx = self.fls[0].dx_meter
slope_stag[0] = 0
slope_stag[1:-1] = (surface_h[0:-1] - surface_h[1:]) / dx
slope_stag[-1] = slope_stag[-2]
return [slope_stag]
@property
def thick_stag(self):
thick_stag = self._thick_stag[0]
thick = self.fls[0].thick
thick_stag[1:-1] = (thick[0:-1] + thick[1:]) / 2.
thick_stag[[0, -1]] = thick[[0, -1]]
return [thick_stag]
@property
def section_stag(self):
section_stag = self._section_stag[0]
section = self.fls[0].section
section_stag[1:-1] = (section[0:-1] + section[1:]) / 2.
section_stag[[0, -1]] = section[[0, -1]]
return [section_stag]
@property
def u_stag(self):
u_stag = self._u_stag[0]
slope_stag = self.slope_stag[0]
thick_stag = self.thick_stag[0]
N = self.glen_n
rhog = self.rhog
rhogh = rhog * slope_stag ** N
u_stag[:] = ((thick_stag**(N+1)) * self._fd * rhogh +
(thick_stag**(N-1)) * self.fs * rhogh)
return [u_stag]
@property
def flux_stag(self):
flux_stag = self._flux_stag[0]
section_stag = self.section_stag[0]
u_stag = self.u_stag[0]
flux_stag[:] = u_stag * section_stag
return [flux_stag]
def step(self, dt):
"""Advance one step."""
# Just a check to avoid useless computations
if dt <= 0:
raise InvalidParamsError('dt needs to be strictly positive')
# read out variables from current flowline
fl = self.fls[0]
dx = fl.dx_meter
width = fl.widths_m
thick = fl.thick
surface_h = fl.surface_h
# some variables needed later
N = self.glen_n
rhog = self.rhog
# calculate staggered variables
width_stag = (width[0:-1] + width[1:]) / 2
w0_stag = self.w0_stag
thick_stag = (thick[0:-1] + thick[1:]) / 2.
dsdx_stag = (surface_h[1:] - surface_h[0:-1]) / dx
# calculate diffusivity
# boundary condition d_stag_0 = d_stag_end = 0
d_stag = self.d_stag[0]
d_stag[1:-1] = ((self._fd * thick_stag ** (N + 2) +
self.fs * thick_stag ** N) * rhog *
(w0_stag + width_stag) / 2 *
np.abs(dsdx_stag) ** (N - 1))
# Time step
if self.fixed_dt:
# change only if step dt is larger than the chosen dt
if self.fixed_dt < dt:
dt = self.fixed_dt
else:
# use stability criterion dt <= dx^2 / max(D/w) * cfl_number
divisor = np.max(np.abs(d_stag[1:-1] / width_stag))
if divisor > cfg.FLOAT_EPS:
cfl_dt = self.cfl_number * dx ** 2 / divisor
else:
cfl_dt = dt
if cfl_dt < dt:
dt = cfl_dt
if cfl_dt < self.min_dt:
raise RuntimeError(
'CFL error: required time step smaller '
'than the minimum allowed: '
'{:.1f}s vs {:.1f}s. Happening at '
'simulation year {:.1f}, fl_id {}, '
'bin_id {} and max_D {:.3f} m2 yr-1.'
''.format(cfl_dt, self.min_dt, self.yr, 0,
np.argmax(np.abs(d_stag)),
divisor * cfg.SEC_IN_YEAR))
# calculate diagonals of Amat
d0 = dt / dx ** 2 * (d_stag[:-1] + d_stag[1:]) / width
dm = - dt / dx ** 2 * d_stag[:-1] / width
dp = - dt / dx ** 2 * d_stag[1:] / width
# construct banded form of the matrix, which is used during solving
# (see https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_banded.html)
# original matrix:
# d_matrix = (np.diag(dp[:-1], 1) +
# np.diag(np.ones(len(d0)) + d0) +
# np.diag(dm[1:], -1))
self.d_matrix_banded[0, 1:] = dp[:-1]
self.d_matrix_banded[1, :] = np.ones(len(d0)) + d0
self.d_matrix_banded[2, :-1] = dm[1:]
# correction term for glacier bed (original equation is an equation for
# the surface height s, which is transformed in an equation for h, as
# s = h + b the term below comes from the '- b'
b_corr = - d_stag * self.dbed_h_exp_dx
# prepare rhs
smb = self.get_mb(surface_h, self.yr, fl_id=0, fls=self.fls)
rhs = thick + smb * dt + dt / width * (b_corr[:-1] - b_corr[1:]) / dx
# solve matrix and update flowline thickness
thick_new = utils.clip_min(
solve_banded((1, 1), self.d_matrix_banded, rhs),
0)
fl.thick = thick_new
# Next step
self.t += dt
return dt
def get_diagnostics(self, fl_id=-1):
"""Obtain model diagnostics in a pandas DataFrame.
Parameters
----------
fl_id : int
the index of the flowline of interest, from 0 to n_flowline-1.
Default is to take the last (main) one
Returns
-------
a pandas DataFrame, which index is distance along flowline (m). Units:
- surface_h, bed_h, ice_tick, section_width: m
- section_area: m2
- slope: -
- ice_flux, tributary_flux: m3 of *ice* per second
- ice_velocity: m per second (depth-section integrated)
- surface_ice_velocity: m per second (corrected for surface - simplified)
"""
import pandas as pd
fl = self.fls[fl_id]
nx = fl.nx
df = pd.DataFrame(index=fl.dx_meter * np.arange(nx))
df.index.name = 'distance_along_flowline'
df['surface_h'] = fl.surface_h
df['bed_h'] = fl.bed_h
df['ice_thick'] = fl.thick
df['section_width'] = fl.widths_m
df['section_area'] = fl.section
# Staggered
var = self.slope_stag[fl_id]
df['slope'] = (var[1:nx+1] + var[:nx])/2
var = self.flux_stag[fl_id]
df['ice_flux'] = (var[1:nx+1] + var[:nx])/2
var = self.u_stag[fl_id]
df['ice_velocity'] = (var[1:nx+1] + var[:nx])/2
df['surface_ice_velocity'] = df['ice_velocity'] * self._surf_vel_fac
return df
[docs]
class FileModel(object):
"""Duck FlowlineModel which actually reads data out of a nc file."""
[docs]
def __init__(self, path):
""" Instantiate."""
self.fls = glacier_from_netcdf(path)
fl_tss = []
for flid, fl in enumerate(self.fls):
with xr.open_dataset(path, group='fl_{}'.format(flid)) as ds:
if flid == 0:
# Populate time
self.time = ds.time.values
try:
self.years = ds.year.values
except AttributeError:
raise InvalidWorkflowError('The provided model output '
'file is incomplete (likely '
'when the previous '
'run failed) or corrupt.')
try:
self.months = ds.month.values
except AttributeError:
self.months = self.years * 0 + 1
# Read out the data
fl_data = {
'ts_section': ds.ts_section.values,
'ts_width_m': ds.ts_width_m.values,
}
try:
fl_data['ts_calving_bucket_m3'] = ds.ts_calving_bucket_m3.values
except AttributeError:
fl_data['ts_calving_bucket_m3'] = self.years * 0
fl_tss.append(fl_data)
self.fl_tss = fl_tss
self.last_yr = float(ds.time[-1])
# Calving diags
try:
with xr.open_dataset(path) as ds:
self._calving_m3_since_y0 = ds.calving_m3.values
self.water_level = ds.water_level
self.do_calving = True
except AttributeError:
self._calving_m3_since_y0 = 0
self.do_calving = False
self.water_level = 0
# time
self.reset_y0()
def __enter__(self):
warnings.warn('FileModel no longer needs to be run as a '
'context manager. You can safely remove the '
'`with` statement.', FutureWarning)
return self
def __exit__(self, exc_type, exc_value, traceback):
pass
def reset_y0(self, y0=None):
"""Reset the initial model time"""
if y0 is None:
y0 = float(self.time[0])
self.y0 = y0
self.yr = y0
self._current_index = 0
@property
def area_m2(self):
return np.sum([f.area_m2 for f in self.fls])
@property
def volume_m3(self):
return np.sum([f.volume_m3 for f in self.fls])
@property
def volume_km3(self):
return self.volume_m3 * 1e-9
@property
def area_km2(self):
return self.area_m2 * 1e-6
@property
def length_m(self):
return self.fls[-1].length_m
@property
def calving_m3_since_y0(self):
if self.do_calving:
return self._calving_m3_since_y0[self._current_index]
else:
return 0
def run_until(self, year=None, month=None):
"""Mimics the model's behavior.
Is quite slow tbh.
"""
try:
if month is not None:
pok = np.nonzero((self.years == year) & (self.months == month))[0][0]
else:
pok = np.nonzero(self.time == year)[0][0]
except IndexError as err:
raise IndexError('Index year={}, month={} not available in '
'FileModel.'.format(year, month)) from err
self.yr = self.time[pok]
self._current_index = pok
for fl, fl_ts in zip(self.fls, self.fl_tss):
fl.section = fl_ts['ts_section'][pok, :]
fl.calving_bucket_m3 = fl_ts['ts_calving_bucket_m3'][pok]
def area_m2_ts(self, rollmin=0):
"""rollmin is the number of years you want to smooth onto"""
sel = 0
for fl, fl_ts in zip(self.fls, self.fl_tss):
widths = np.where(fl_ts['ts_section'] > 0., fl_ts['ts_width_m'], 0.)
sel += widths.sum(axis=1) * fl.dx_meter
sel = pd.Series(data=sel, index=self.time, name='area_m2')
if rollmin != 0:
sel = sel.rolling(rollmin).min()
sel.iloc[0:rollmin] = sel.iloc[rollmin]
return sel
def area_km2_ts(self, **kwargs):
return self.area_m2_ts(**kwargs) * 1e-6
def volume_m3_ts(self):
sel = 0
for fl, fl_ts in zip(self.fls, self.fl_tss):
sel += fl_ts['ts_section'].sum(axis=1) * fl.dx_meter
sel -= fl_ts['ts_calving_bucket_m3']
return pd.Series(data=sel, index=self.time, name='volume_m3')
def volume_km3_ts(self):
return self.volume_m3_ts() * 1e-9
def length_m_ts(self, rollmin=0):
raise NotImplementedError('length_m_ts is no longer available in the '
'full output files. To obtain the length '
'time series, refer to the diagnostic '
'output file.')
class MassRedistributionCurveModel(FlowlineModel):
"""Glacier geometry updated using mass redistribution curves.
Also known as the "delta-h method": This uses mass redistribution curves
from Huss et al. (2010) to update the glacier geometry.
Code by David Rounce (PyGEM) and adapted by F. Maussion.
"""
def __init__(self, flowlines, mb_model=None, y0=0.,
is_tidewater=False, water_level=None,
do_kcalving=None, calving_k=None,
advance_method=1,
**kwargs):
""" Instantiate the model.
Parameters
----------
flowlines : list
the glacier flowlines
mb_model : MassBalanceModel
the mass balance model
y0 : int
initial year of the simulation
advance_method : int
different ways to handle positive MBs:
- 0: do nothing, i.e. simply let the glacier thicken instead of
thinning
- 1: add some of the mass at the end of the glacier
- 2: add some of the mass at the end of the glacier, but
differently
"""
super(MassRedistributionCurveModel, self).__init__(flowlines,
mb_model=mb_model,
y0=y0,
water_level=water_level,
mb_elev_feedback='annual',
required_model_steps='annual',
**kwargs)
if len(self.fls) > 1:
raise InvalidWorkflowError('MassRedistributionCurveModel is not '
'set up for multiple flowlines')
fl = self.fls[0]
self.glac_idx_initial = fl.thick.nonzero()[0]
self.y0 = y0
# Some ways to deal with positive MB
self.advance_method = advance_method
# Frontal ablation shenanigans
if do_kcalving is None:
do_kcalving = cfg.PARAMS['use_kcalving_for_run']
self.do_calving = do_kcalving and self.is_tidewater
if calving_k is None:
calving_k = cfg.PARAMS['calving_k']
self.is_tidewater = is_tidewater
self.calving_k = calving_k
self.calving_m3_since_y0 = 0. # total calving since time y0
def step(self, dt):
"""Advance one step. Here it should be one year"""
# Just a check to avoid useless computations
if dt <= 0:
raise InvalidParamsError('dt needs to be strictly positive')
if dt > cfg.SEC_IN_YEAR:
# This should not happen from how run_until is built, but
# to match the adaptive time stepping scheme of other models
# we don't complain here and just do one year
dt = cfg.SEC_IN_YEAR
elif dt < cfg.SEC_IN_YEAR:
# Here however we complain - we really want one year exactly
raise InvalidWorkflowError('I was asked to run for less than one '
'year. Delta-H models can\'t do that.')
# Flowline state
fl = self.fls[0]
fl_id = 0
height = fl.surface_h.copy()
section = fl.section.copy()
thick = fl.thick.copy()
width = fl.widths_m.copy()
# FRONTAL ABLATION
if self.do_calving:
raise NotImplementedError('Frontal ablation not there yet.')
# Redistribute mass if glacier is still there
if not np.any(section > 0):
# Do nothing
self.t += dt
return dt
# Mass redistribution according to Huss empirical curves
# Annual glacier mass balance [m ice s-1]
mb = self.get_mb(height, year=self.yr, fls=self.fls, fl_id=fl_id)
# [m ice yr-1]
mb *= cfg.SEC_IN_YEAR
# Ok now to the bulk of it
# Mass redistribution according to empirical equations from
# Huss and Hock (2015) accounting for retreat/advance.
# glac_idx_initial is required to ensure that the glacier does not
# advance to area where glacier did not exist before
# (e.g., retreat and advance over a vertical cliff)
# Note: since OGGM uses the DEM, heights along the flowline do not
# necessarily decrease, i.e., there can be overdeepenings along the
# flowlines that occur as the glacier retreats. This is problematic
# for 'adding' a bin downstream in cases of glacier advance because
# you'd be moving new ice to a higher elevation. To avoid this
# unrealistic case, in the event that this would occur, the
# overdeepening will simply fill up with ice first until it reaches
# an elevation where it would put new ice into a downstream bin.
# Bin area [m2]
bin_area = width * fl.dx_meter
bin_area[thick == 0] = 0
# Annual glacier-wide volume change [m3]
# units: m3 ice per year
glacier_delta_v = (mb * bin_area).sum()
# For hindcast simulations, volume change is the opposite
# We don't implement this in OGGM right now
# If volume loss is more than the glacier volume, melt everything and
# stop here. Otherwise, redistribute mass loss/gains across the glacier
glacier_volume_total = (section * fl.dx_meter).sum()
if (glacier_volume_total + glacier_delta_v) < 0:
# Set all to zero and return
fl.section *= 0
return
# Determine where glacier exists
glac_idx = thick.nonzero()[0]
# Compute bin volume change [m3 ice yr-1] after redistribution
bin_delta_v = mass_redistribution_curve_huss(height, bin_area, mb,
glac_idx, glacier_delta_v)
# Here per construction bin_delta_v should be approx equal to glacier_delta_v
np.testing.assert_allclose(bin_delta_v.sum(), glacier_delta_v)
# Update cross sectional area
# relevant issue: https://github.com/OGGM/oggm/issues/941
# volume change divided by length (dx); units m2
delta_s = bin_delta_v / fl.dx_meter
fl.section = utils.clip_min(section + delta_s, 0)
if not np.any(delta_s > 0):
# We shrink - all good
fl.section = utils.clip_min(section + delta_s, 0)
# Done
self.t += dt
return dt
# We grow - that's bad because growing is hard
# First see what happens with thickness
# (per construction the redistribution curves are all positive btw)
fl.section = utils.clip_min(section + delta_s, 0)
# We decide if we really want to advance or if we don't care
# Matthias and Dave use 5m, I find that too much, because not
# redistributing may lead to runaway effects
dh_thres = 1 # in meters
if np.all((fl.thick - thick) <= dh_thres):
# That was not much increase return
self.t += dt
return dt
# Ok, we really grow then - back to previous state and decide on what to do
fl.section = section
if (fl.thick[-2] > 0) or (self.advance_method == 0):
# Do not advance (same as in the melting case but thickening)
fl.section = utils.clip_min(section + delta_s, 0)
if self.advance_method == 1:
# Just shift the redistribution by one pix
new_delta_s = np.append([0], delta_s)[:-1]
# Redis param - how much of mass we want to shift (0 - 1)
# 0 would be like method 0 (do nothing)
# 1 would be to shift all mass by 1 pixel
a = 0.2
new_delta_s = a * new_delta_s + (1 - a) * delta_s
# Make sure we are still preserving mass
new_delta_s *= delta_s.sum() / new_delta_s.sum()
# Update section
fl.section = utils.clip_min(section + new_delta_s, 0)
elif self.advance_method == 2:
# How much of what's positive do we want to add in front
redis_perc = 0.01 # in %
# Decide on volume that needs redistributed
section_redis = delta_s * redis_perc
# The rest is added where it was
fl.section = utils.clip_min(section + delta_s - section_redis, 0)
# Then lets put this "volume" where we can
section_redis = section_redis.sum()
while section_redis > 0:
# Get the terminus grid
orig_section = fl.section.copy()
p_term = np.nonzero(fl.thick > 0)[0][-1]
# Put ice on the next bin, until ice is as high as terminus
# Anything else would require slope assumptions, but it would
# be possible
new_thick = fl.surface_h[p_term] - fl.bed_h[p_term + 1]
if new_thick > 0:
# No deepening
fl.thick[p_term + 1] = new_thick
new_section = fl.section[p_term + 1]
if new_section > section_redis:
# This would be too much, just add what we have
orig_section[p_term + 1] = section_redis
fl.section = orig_section
section_redis = 0
else:
# OK this bin is done, continue
section_redis -= new_section
else:
# We have a deepening, or we have to climb
target_h = fl.bed_h[p_term + 1] + 1
to_fill = (fl.surface_h < target_h) & (fl.thick > 0)
# Theoretical section area needed
fl.thick[to_fill] = target_h - fl.bed_h[to_fill]
new_section = fl.section.sum() - orig_section.sum()
if new_section > section_redis:
# This would be too much, just add what we have
orig_section[to_fill] += new_section / np.sum(to_fill)
fl.section = orig_section
section_redis = 0
else:
# OK this bin is done, continue
section_redis -= new_section
elif self.advance_method == 3:
# A bit closer to Huss and Rounce maybe?
raise RuntimeError('not yet')
# Done
self.t += dt
return dt
def mass_redistribution_curve_huss(height, bin_area, mb, glac_idx, glacier_delta_v):
"""Apply the mass redistribution curves from Huss and Hock (2015).
This has to be followed by added logic which takes into consideration
retreat and advance.
Parameters
----------
height : np.ndarray
Glacier elevation [m] from previous year for each elevation bin
bin_area : np.ndarray
Glacier area [m2] from previous year for each elevation bin
mb : np.ndarray
Annual climatic mass balance [m ice yr-1] for each elevation bin for
a single year
glac_idx : np.ndarray
glacier indices for present timestep
glacier_delta_v : float
glacier-wide volume change [m3 ice yr-1] based on the annual mb
Returns
-------
bin_volume_change : np.ndarray
Ice volume change [m3 yr-1] for each elevation bin
"""
# Apply mass redistribution curve
if glac_idx.shape[0] <= 3:
# No need for a curve when glacier is so small
return mb * bin_area
# Select the parameters based on glacier area
if bin_area.sum() * 1e-6 > 20:
gamma, a, b, c = (6, -0.02, 0.12, 0)
elif bin_area.sum() * 1e-6 > 5:
gamma, a, b, c = (4, -0.05, 0.19, 0.01)
else:
gamma, a, b, c = (2, -0.30, 0.60, 0.09)
# reset variables
delta_h_norm = bin_area * 0
# Normalized elevation range [-]
# (max elevation - bin elevation) / (max_elevation - min_elevation)
gla_height = height[glac_idx]
max_elev, min_elev = gla_height.max(), gla_height.min()
h_norm = (max_elev - gla_height) / (max_elev - min_elev)
# using indices as opposed to elevations automatically skips bins on
# the glacier that have no area such that the normalization is done
# only on bins where the glacier lies
# Normalized ice thickness change [-]
delta_h_norm[glac_idx] = (h_norm + a) ** gamma + b * (h_norm + a) + c
# delta_h = (h_n + a)**gamma + b*(h_n + a) + c
# limit normalized ice thickness change to between 0 - 1
delta_h_norm = utils.clip_array(delta_h_norm, 0, 1)
# Huss' ice thickness scaling factor, fs_huss [m ice]
# units: m3 / (m2 * [-]) * (1000 m / 1 km) = m ice
fs_huss = glacier_delta_v / (bin_area * delta_h_norm).sum()
# Volume change [m3 ice yr-1]
return delta_h_norm * fs_huss * bin_area
def flowline_from_dataset(ds):
"""Instantiates a flowline from an xarray Dataset."""
cl = globals()[ds.attrs['class']]
line = shpg.LineString(ds['linecoords'].values)
args = dict(line=line, dx=ds.dx, map_dx=ds.map_dx,
surface_h=ds['surface_h'].values,
bed_h=ds['bed_h'].values)
have = {'c', 'x', 'surface_h', 'linecoords', 'bed_h', 'z', 'p', 'n',
'time', 'month', 'year', 'ts_width_m', 'ts_section',
'ts_calving_bucket_m3'}
missing_vars = set(ds.variables.keys()).difference(have)
for k in missing_vars:
data = ds[k].values
if ds[k].dims[0] == 'z':
data = data[0]
args[k] = data
return cl(**args)
def glacier_from_netcdf(path):
"""Instantiates a list of flowlines from an xarray Dataset."""
with xr.open_dataset(path) as ds:
fls = []
for flid in ds['flowlines'].values:
with xr.open_dataset(path, group='fl_{}'.format(flid)) as _ds:
fls.append(flowline_from_dataset(_ds))
for i, fid in enumerate(ds['flows_to_id'].values):
if fid != -1:
fls[i].set_flows_to(fls[fid])
# Adds the line level
for fl in fls:
fl.order = line_order(fl)
return fls
def calving_glacier_downstream_line(line, n_points):
"""Extends a calving glacier flowline past the terminus."""
if line is None:
return None
x, y = line.coords.xy
dx = x[-1] - x[-2]
dy = y[-1] - y[-2]
x = np.append(x, x[-1] + dx * np.arange(1, n_points+1))
y = np.append(y, y[-1] + dy * np.arange(1, n_points+1))
return shpg.LineString(np.array([x, y]).T)
[docs]
@entity_task(log, writes=['model_flowlines'])
def init_present_time_glacier(gdir, filesuffix='',
use_binned_thickness_data=False):
"""Merges data from preprocessing tasks. First task after inversion!
This updates the `mode_flowlines` file and creates a stand-alone numerical
glacier ready to run.
Parameters
----------
gdir : :py:class:`oggm.GlacierDirectory`
the glacier directory to process
filesuffix : str
append a suffix to the model_flowlines filename (e.g. useful for
dynamic melt_f calibration including an inversion, so the original
model_flowlines are not changed).
use_binned_thickness_data : bool or str
if you want to use thickness data, which was binned to the elevation
band flowlines with tasks.elevation_band_flowine and
tasks.fixed_dx_elevation_band_flowline, you can provide the name of the
data here to create a flowline for a dynamic model run
"""
# Some vars
invs = gdir.read_pickle('inversion_output')
map_dx = gdir.grid.dx
def_lambda = cfg.PARAMS['trapezoid_lambdas']
cls = gdir.read_pickle('inversion_flowlines')
# Fill the tributaries
new_fls = []
flows_to_ids = []
for cl, inv in zip(cls, invs):
# Get the data to make the model flowlines
line = cl.line
surface_h = cl.surface_h
widths_m = cl.widths * map_dx
assert np.all(widths_m > 0)
if not use_binned_thickness_data:
# classical initialisation after the inversion
section = inv['volume'] / (cl.dx * map_dx)
bed_h = surface_h - inv['thick']
bed_shape = 4 * inv['thick'] / widths_m ** 2
lambdas = inv['thick'] * np.nan
lambdas[inv['is_trapezoid']] = def_lambda
lambdas[inv['is_rectangular']] = 0.
# Where the flux and the thickness is zero we just assume trapezoid:
lambdas[bed_shape == 0] = def_lambda
else:
# here we use binned thickness data for the initialisation
elev_fl = pd.read_csv(
gdir.get_filepath('elevation_band_flowline',
filesuffix='_fixed_dx'), index_col=0)
assert np.allclose(widths_m, elev_fl['widths_m'])
elev_fl_thick = elev_fl[use_binned_thickness_data].values
section = elev_fl_thick * widths_m
lambdas = np.ones(len(section)) * def_lambda
# for trapezoidal the calculation of thickness results in quadratic
# equation, we only keep solution which results in a positive w0
# value (-> w/lambda >= h),
# it still could happen that we would need a negative w0 if the
# section is too large, in those cases we get a negative value
# inside sqrt (we ignore the RuntimeWarning) -> if this happens we
# use rectangular shape with original thickness
with np.errstate(invalid='ignore'):
thick = ((2 * widths_m -
np.sqrt(4 * widths_m ** 2 -
4 * lambdas * 2 * section)) /
(2 * lambdas))
nan_thick = np.isnan(thick)
thick[nan_thick] = elev_fl_thick[nan_thick]
lambdas[nan_thick] = 0
# finally the glacier bed and other stuff
bed_h = surface_h - thick
bed_shape = 4 * thick / widths_m ** 2
if not gdir.is_tidewater and inv['is_last']:
# for valley glaciers, simply add the downstream line, depending on
# selected shape parabola or trapezoidal
dic_ds = gdir.read_pickle('downstream_line')
if cfg.PARAMS['downstream_line_shape'] == 'parabola':
bed_shape = np.append(bed_shape, dic_ds['bedshapes'])
lambdas = np.append(lambdas, dic_ds['bedshapes'] * np.nan)
widths_m = np.append(widths_m, dic_ds['bedshapes'] * 0.)
elif cfg.PARAMS['downstream_line_shape'] == 'trapezoidal':
bed_shape = np.append(bed_shape, dic_ds['bedshapes'] * np.nan)
lambdas = np.append(lambdas, np.ones(len(dic_ds['w0s'])) *
def_lambda)
widths_m = np.append(widths_m, dic_ds['w0s'])
else:
raise InvalidParamsError(
f"Unknown cfg.PARAMS['downstream_line_shape'] = "
f"{cfg.PARAMS['downstream_line_shape']} (options are "
f"'parabola' and 'trapezoidal').")
section = np.append(section, dic_ds['bedshapes'] * 0.)
surface_h = np.append(surface_h, dic_ds['surface_h'])
bed_h = np.append(bed_h, dic_ds['surface_h'])
line = dic_ds['full_line']
if gdir.is_tidewater and inv['is_last']:
# Continue the bed a little
n_points = cfg.PARAMS['calving_line_extension']
cf_slope = cfg.PARAMS['calving_front_slope']
deepening = n_points * cl.dx * map_dx * cf_slope
line = calving_glacier_downstream_line(line, n_points=n_points)
bed_shape = np.append(bed_shape, np.zeros(n_points))
lambdas = np.append(lambdas, np.zeros(n_points))
section = np.append(section, np.zeros(n_points))
# The bed slowly deepens
bed_down = np.linspace(bed_h[-1], bed_h[-1]-deepening, n_points)
bed_h = np.append(bed_h, bed_down)
surface_h = np.append(surface_h, bed_down)
widths_m = np.append(widths_m,
np.zeros(n_points) + np.mean(widths_m[-5:]))
nfl = MixedBedFlowline(line=line, dx=cl.dx, map_dx=map_dx,
surface_h=surface_h, bed_h=bed_h,
section=section, bed_shape=bed_shape,
is_trapezoid=np.isfinite(lambdas),
lambdas=lambdas,
widths_m=widths_m,
rgi_id=cl.rgi_id,
gdir=gdir)
# Update attrs
if cl.flows_to:
flows_to_ids.append(cls.index(cl.flows_to))
else:
flows_to_ids.append(None)
new_fls.append(nfl)
# Finalize the linkages
for fl, fid in zip(new_fls, flows_to_ids):
if fid:
fl.set_flows_to(new_fls[fid])
# Adds the line level
for fl in new_fls:
fl.order = line_order(fl)
# Write the data
gdir.write_pickle(new_fls, 'model_flowlines', filesuffix=filesuffix)
def decide_evolution_model(evolution_model=None):
"""Simple utility to check and apply user choices in cfg.PARAMS"""
if evolution_model is not None:
return evolution_model
from_cfg = cfg.PARAMS['evolution_model'].lower()
if from_cfg == 'SemiImplicit'.lower():
evolution_model = SemiImplicitModel
elif from_cfg == 'FluxBased'.lower():
evolution_model = FluxBasedModel
elif from_cfg == 'MassRedistributionCurve'.lower():
evolution_model = MassRedistributionCurveModel
else:
raise InvalidParamsError("PARAMS['evolution_model'] not recognized"
f": {from_cfg}.")
return evolution_model
[docs]
@entity_task(log)
def flowline_model_run(gdir, output_filesuffix=None, mb_model=None,
ys=None, ye=None, zero_initial_glacier=False,
init_model_fls=None, store_monthly_step=False,
glen_a_fac=None, fs_fac=None,
fixed_geometry_spinup_yr=None,
store_model_geometry=None,
store_fl_diagnostics=None,
water_level=None,
evolution_model=None, stop_criterion=None,
init_model_filesuffix=None, init_model_yr=None,
**kwargs):
"""Runs a model simulation with the default time stepping scheme.
Parameters
----------
gdir : :py:class:`oggm.GlacierDirectory`
the glacier directory to process
output_filesuffix : str
this adds a suffix to the output file (useful to avoid overwriting
previous experiments)
mb_model : :py:class:`core.MassBalanceModel`
a MassBalanceModel instance
ys : int
start year of the model run (needs to be set)
ye : int
end year of the model run (need to be set)
zero_initial_glacier : bool
if true, the ice thickness is set to zero before the simulation
init_model_filesuffix : str
if you want to start from a previous model run state. Can be
combined with `init_model_yr`
init_model_yr : int
the year of the initial run you want to start from. The default
is to take the last year of the simulation.
init_model_fls : []
list of flowlines to use to initialise the model (the default is the
present_time_glacier file from the glacier directory)
store_monthly_step : bool
whether to store the diagnostic data at a monthly time step or not
(default is yearly)
glen_a_fac : float
perturbate the default glen_a (either from the inversion if
PARAMS['use_inversion_params_for_run'] is True or PARAMS['glen_a'] if
False) with a chosen multiplicative parameter. Useful for
parameter perturbation experiments.
fs_fac : float
same as glen_a_fac but for sliding
store_model_geometry : bool
whether to store the full model geometry run file to disk or not.
(new in OGGM v1.4.1: default is to follow
cfg.PARAMS['store_model_geometry'])
store_fl_diagnostics : bool
whether to store the model flowline diagnostics to disk or not.
(default is to follow cfg.PARAMS['store_fl_diagnostics'])
evolution_model : :class:oggm.core.FlowlineModel
which evolution model to use. Default: cfg.PARAMS['evolution_model']
Not all models work in all circumstances!
water_level : float
the water level. It should be zero m a.s.l, but:
- sometimes the frontal elevation is unrealistically high (or low).
- lake terminating glaciers
- other uncertainties
The default is to take the water level obtained from the ice
thickness inversion.
stop_criterion : func
a function which decides on when to stop the simulation. See
`run_until_and_store` documentation for more information.
kwargs : dict
kwargs to pass to the FluxBasedModel instance
fixed_geometry_spinup_yr : int
if set to an integer, the model will artificially prolongate
all outputs of run_until_and_store to encompass all time stamps
starting from the chosen year. The only output affected are the
glacier wide diagnostic files - all other outputs are set
to constants during "spinup"
"""
if init_model_filesuffix is not None:
fp = gdir.get_filepath('model_geometry',
filesuffix=init_model_filesuffix)
fmod = FileModel(fp)
if init_model_yr is None:
init_model_yr = fmod.last_yr
fmod.run_until(init_model_yr)
init_model_fls = fmod.fls
if ys != init_model_yr and ys != 0:
log.warning(f"You are starting a run with ys={ys} "
f"and init_model_yr={init_model_yr}.")
mb_elev_feedback = kwargs.get('mb_elev_feedback', 'annual')
if store_monthly_step and (mb_elev_feedback == 'annual'):
warnings.warn("The mass balance used to drive the ice dynamics model "
"is updated yearly. If you want the output to be stored "
"monthly and also reflect monthly processes, "
"set store_monthly_step=True and "
"mb_elev_feedback='monthly'. This is not recommended "
"though: for monthly MB applications, we recommend to "
"use the `run_with_hydro` task.")
if cfg.PARAMS['use_inversion_params_for_run']:
diag = gdir.get_diagnostics()
fs = diag.get('inversion_fs', cfg.PARAMS['fs'])
glen_a = diag.get('inversion_glen_a', cfg.PARAMS['glen_a'])
else:
fs = cfg.PARAMS['fs']
glen_a = cfg.PARAMS['glen_a']
if glen_a_fac is not None:
glen_a *= glen_a_fac
if fs_fac is not None:
fs *= fs_fac
kwargs.setdefault('fs', fs)
kwargs.setdefault('glen_a', glen_a)
if store_model_geometry is None:
store_model_geometry = cfg.PARAMS['store_model_geometry']
if store_fl_diagnostics is None:
store_fl_diagnostics = cfg.PARAMS['store_fl_diagnostics']
if store_model_geometry:
geom_path = gdir.get_filepath('model_geometry',
filesuffix=output_filesuffix,
delete=True)
else:
geom_path = False
if store_fl_diagnostics:
fl_diag_path = gdir.get_filepath('fl_diagnostics',
filesuffix=output_filesuffix,
delete=True)
else:
fl_diag_path = False
diag_path = gdir.get_filepath('model_diagnostics',
filesuffix=output_filesuffix,
delete=True)
if init_model_fls is None:
fls = gdir.read_pickle('model_flowlines')
else:
fls = copy.deepcopy(init_model_fls)
if zero_initial_glacier:
for fl in fls:
fl.thick = fl.thick * 0.
evolution_model = decide_evolution_model(evolution_model)
if (cfg.PARAMS['use_kcalving_for_run'] and gdir.is_tidewater and
water_level is None):
# check for water level
water_level = gdir.get_diagnostics().get('calving_water_level', None)
if water_level is None:
raise InvalidWorkflowError('This tidewater glacier seems to not '
'have been inverted with the '
'`find_inversion_calving` task. Set '
"PARAMS['use_kcalving_for_run'] to "
'`False` or set `water_level` '
'to prevent this error.')
model = evolution_model(fls, mb_model=mb_model, y0=ys,
inplace=True,
is_tidewater=gdir.is_tidewater,
is_lake_terminating=gdir.is_lake_terminating,
water_level=water_level,
**kwargs)
with warnings.catch_warnings():
# For operational runs we ignore the warnings
warnings.filterwarnings('ignore', category=RuntimeWarning)
model.run_until_and_store(ye,
geom_path=geom_path,
diag_path=diag_path,
fl_diag_path=fl_diag_path,
store_monthly_step=store_monthly_step,
fixed_geometry_spinup_yr=fixed_geometry_spinup_yr,
stop_criterion=stop_criterion)
return model
[docs]
@entity_task(log)
def run_random_climate(gdir, nyears=1000, y0=None, halfsize=15,
ys=None, ye=None,
bias=0, seed=None, temperature_bias=None,
precipitation_factor=None,
store_monthly_step=False,
store_model_geometry=None,
store_fl_diagnostics=None,
mb_model_class=MonthlyTIModel,
climate_filename='climate_historical',
climate_input_filesuffix='',
output_filesuffix='', init_model_fls=None,
init_model_filesuffix=None,
init_model_yr=None,
zero_initial_glacier=False,
unique_samples=False, **kwargs):
"""Runs the random mass balance model for a given number of years.
This will initialize a
:py:class:`oggm.core.massbalance.MultipleFlowlineMassBalance`,
and run a :py:func:`oggm.core.flowline.flowline_model_run`.
Parameters
----------
gdir : :py:class:`oggm.GlacierDirectory`
the glacier directory to process
nyears : int
length of the simulation
ys : int, default: 0 or init_model_yr
first year of the fake output timeseries. Since these simulations
are idealized, the concept of "time" is only relative to the start of
the simulation.
ye : int, default: nyears
can be used instead of "nyears"
y0 : int
central year of the random climate period. Has to be set!
halfsize : int, optional
the half-size of the time window (window size = 2 * halfsize + 1)
bias : float
bias of the mb model (offset to add to the MB). Default is zero.
seed : int
seed for the random generator. If you ignore this, the runs will be
different each time. Setting it to a fixed seed across glaciers can
be useful if you want to have the same climate years for all of them
temperature_bias : float
add a bias to the temperature timeseries (note that this is added
to any bias that the calibration decided is needed)
precipitation_factor: float
multiply a factor to the precipitation time series (note that
this factor is multiplied to any factor that was decided during
calibration or by global parameters)
store_monthly_step : bool
whether to store the diagnostic data at a monthly time step or not
(default is yearly)
store_model_geometry : bool
whether to store the full model geometry run file to disk or not.
(new in OGGM v1.4.1: default is to follow
cfg.PARAMS['store_model_geometry'])
store_fl_diagnostics : bool
whether to store the model flowline diagnostics to disk or not.
(default is to follow cfg.PARAMS['store_fl_diagnostics'])
mb_model_class : MassBalanceModel class
The MassBalanceModel class to use inside the RandomMassBalance (default
MonthlyTIModel)
climate_filename : str
name of the climate file, e.g. 'climate_historical' (default) or
'gcm_data'
climate_input_filesuffix: str
filesuffix for the input climate file
output_filesuffix : str
this add a suffix to the output file (useful to avoid overwriting
previous experiments)
init_model_filesuffix : str
if you want to start from a previous model run state. Can be
combined with `init_model_yr`
init_model_yr : int
the year of the initial run you want to start from. The default
is to take the last year of the simulation.
init_model_fls : []
list of flowlines to use to initialise the model (the default is the
present_time_glacier file from the glacier directory)
zero_initial_glacier : bool
if true, the ice thickness is set to zero before the simulation
unique_samples: bool
if true, chosen random mass balance years will only be available once
per random climate period-length
if false, every model year will be chosen from the random climate
period with the same probability
kwargs : dict
kwargs to pass to the flowline_model_run task
"""
mb_model = MultipleFlowlineMassBalance(gdir,
mb_model_class=partial(
RandomMassBalance,
mb_model_class=mb_model_class),
y0=y0, halfsize=halfsize,
bias=bias, seed=seed,
filename=climate_filename,
input_filesuffix=climate_input_filesuffix,
unique_samples=unique_samples)
if temperature_bias is not None:
mb_model.temp_bias += temperature_bias
if precipitation_factor is not None:
mb_model.prcp_fac *= precipitation_factor
if ys is None:
ys = init_model_yr if init_model_yr is not None else 0
if ye is None:
ye = ys + nyears
return flowline_model_run(gdir, output_filesuffix=output_filesuffix,
mb_model=mb_model, ys=ys, ye=ye,
store_monthly_step=store_monthly_step,
store_model_geometry=store_model_geometry,
store_fl_diagnostics=store_fl_diagnostics,
init_model_filesuffix=init_model_filesuffix,
init_model_yr=init_model_yr,
init_model_fls=init_model_fls,
zero_initial_glacier=zero_initial_glacier,
**kwargs)
[docs]
@entity_task(log)
def run_constant_climate(gdir, nyears=1000, y0=None, halfsize=15,
ys=None, ye=None,
bias=0, temperature_bias=None,
precipitation_factor=None,
store_monthly_step=False,
store_model_geometry=None,
store_fl_diagnostics=None,
init_model_filesuffix=None,
init_model_yr=None,
output_filesuffix='',
climate_filename='climate_historical',
mb_model_class=MonthlyTIModel,
climate_input_filesuffix='',
init_model_fls=None,
zero_initial_glacier=False,
**kwargs):
"""Runs the constant mass balance model for a given number of years.
This will initialize a
:py:class:`oggm.core.massbalance.MultipleFlowlineMassBalance`,
and run a :py:func:`oggm.core.flowline.flowline_model_run`.
Parameters
----------
gdir : :py:class:`oggm.GlacierDirectory`
the glacier directory to process
nyears : int
length of the simulation (default: as long as needed for reaching
equilibrium)
ys : int, default: 0 or init_model_yr
first year of the fake output timeseries. Since these simulations
are idealized, the concept of "time" is only relative to the start of
the simulation.
ye : int, default: nyears
can be used instead of "nyears"
y0 : int
central year of the random climate period. Has to be set!
halfsize : int, optional
the half-size of the time window (window size = 2 * halfsize + 1)
bias : float
bias of the mb model (offset to add to the MB). Default is zero.
temperature_bias : float
add a bias to the temperature timeseries (note that this is added
to any bias that the calibration decided is needed)
precipitation_factor: float
multiply a factor to the precipitation time series (note that
this factor is multiplied to any factor that was decided during
calibration or by global parameters)
store_monthly_step : bool
whether to store the diagnostic data at a monthly time step or not
(default is yearly)
store_model_geometry : bool
whether to store the full model geometry run file to disk or not.
(new in OGGM v1.4.1: default is to follow
cfg.PARAMS['store_model_geometry'])
store_fl_diagnostics : bool
whether to store the model flowline diagnostics to disk or not.
(default is to follow cfg.PARAMS['store_fl_diagnostics'])
init_model_filesuffix : str
if you want to start from a previous model run state. Can be
combined with `init_model_yr`
init_model_yr : int
the year of the initial run you want to start from. The default
is to take the last year of the simulation.
climate_filename : str
name of the climate file, e.g. 'climate_historical' (default) or
'gcm_data'
mb_model_class : MassBalanceModel class
The MassBalanceModel class to use inside the ConstantMassBalance
(default MonthlyTIModel)
climate_input_filesuffix: str
filesuffix for the input climate file
output_filesuffix : str
this add a suffix to the output file (useful to avoid overwriting
previous experiments)
zero_initial_glacier : bool
if true, the ice thickness is set to zero before the simulation
init_model_fls : []
list of flowlines to use to initialize the model (the default is the
present_time_glacier file from the glacier directory)
kwargs : dict
kwargs to pass to the flowline_model_run task
"""
mb_model = MultipleFlowlineMassBalance(gdir,
mb_model_class=partial(
ConstantMassBalance,
mb_model_class=mb_model_class),
y0=y0, halfsize=halfsize,
bias=bias,
filename=climate_filename,
input_filesuffix=climate_input_filesuffix)
if temperature_bias is not None:
mb_model.temp_bias += temperature_bias
if precipitation_factor is not None:
mb_model.prcp_fac *= precipitation_factor
if ys is None:
ys = init_model_yr if init_model_yr is not None else 0
if ye is None:
ye = ys + nyears
return flowline_model_run(gdir, output_filesuffix=output_filesuffix,
mb_model=mb_model, ys=ys, ye=ye,
store_monthly_step=store_monthly_step,
store_model_geometry=store_model_geometry,
store_fl_diagnostics=store_fl_diagnostics,
init_model_filesuffix=init_model_filesuffix,
init_model_yr=init_model_yr,
init_model_fls=init_model_fls,
zero_initial_glacier=zero_initial_glacier,
**kwargs)
[docs]
@entity_task(log)
def run_from_climate_data(gdir, ys=None, ye=None, min_ys=None, max_ys=None,
fixed_geometry_spinup_yr=None,
store_monthly_step=False,
store_model_geometry=None,
store_fl_diagnostics=None,
climate_filename='climate_historical',
mb_model=None,
mb_model_class=MonthlyTIModel,
climate_input_filesuffix='', output_filesuffix='',
init_model_filesuffix=None, init_model_yr=None,
init_model_fls=None, zero_initial_glacier=False,
bias=0, temperature_bias=None,
precipitation_factor=None, **kwargs):
""" Runs a glacier with climate input from e.g. CRU or a GCM.
This will initialize a
:py:class:`oggm.core.massbalance.MultipleFlowlineMassBalance`,
and run a :py:func:`oggm.core.flowline.flowline_model_run`.
Parameters
----------
gdir : :py:class:`oggm.GlacierDirectory`
the glacier directory to process
ys : int
start year of the model run (default: from the glacier geometry
date if init_model_filesuffix is None, else init_model_yr)
ye : int
end year of the model run (default: last year of the provided
climate file)
min_ys : int
if you want to impose a minimum start year, regardless if the glacier
inventory date is earlier (e.g. if climate data does not reach).
max_ys : int
if you want to impose a maximum start year, regardless if the glacier
inventory date is later (e.g. if climate data does not reach).
store_monthly_step : bool
whether to store the diagnostic data at a monthly time step or not
(default is yearly)
store_model_geometry : bool
whether to store the full model geometry run file to disk or not.
(new in OGGM v1.4.1: default is to follow
cfg.PARAMS['store_model_geometry'])
store_fl_diagnostics : bool
whether to store the model flowline diagnostics to disk or not.
(default is to follow cfg.PARAMS['store_fl_diagnostics'])
climate_filename : str
name of the climate file, e.g. 'climate_historical' (default) or
'gcm_data'
mb_model : :py:class:`core.MassBalanceModel`
User-povided MassBalanceModel instance. Default is to use a
mb_model_class instance (default MonthlyTIModel)
together with the provided parameters climate_filename,
bias and climate_input_filesuffix.
mb_model_class : MassBalanceModel class
the MassBalanceModel class to use, default is MonthlyTIModel
climate_input_filesuffix: str
filesuffix for the input climate file
output_filesuffix : str
for the output file
init_model_filesuffix : str
if you want to start from a previous model run state. Can be
combined with `init_model_yr`
init_model_yr : int
the year of the initial run you want to start from. The default
is to take the last year of the simulation.
init_model_fls : []
list of flowlines to use to initialise the model (the default is the
present_time_glacier file from the glacier directory).
Ignored if `init_model_filesuffix` is set
zero_initial_glacier : bool
if true, the ice thickness is set to zero before the simulation
bias : float
bias of the mb model (offset to add to the MB). Default is zero.
temperature_bias : float
add a bias to the temperature timeseries (note that this is added
to any bias that the calibration decided is needed)
precipitation_factor: float
multiply a factor to the precipitation time series (note that
this factor is multiplied to any factor that was decided during
calibration or by global parameters)
fixed_geometry_spinup_yr : int
if set to an integer, the model will artificially prolongate
all outputs of run_until_and_store to encompass all time stamps
starting from the chosen year. The only output affected are the
glacier wide diagnostic files - all other outputs are set
to constants during "spinup"
kwargs : dict
kwargs to pass to the flowline_model_run task
"""
if init_model_filesuffix is not None:
fp = gdir.get_filepath('model_geometry',
filesuffix=init_model_filesuffix)
fmod = FileModel(fp)
if init_model_yr is None:
init_model_yr = fmod.last_yr
fmod.run_until(init_model_yr)
init_model_fls = fmod.fls
if ys is None:
ys = init_model_yr
try:
rgi_year = gdir.rgi_date.year
except AttributeError:
rgi_year = gdir.rgi_date
# Take from rgi date if not set yet
if ys is None:
# See also: https://github.com/OGGM/oggm/issues/1020
# Even in calendar dates, we prefer to start in the next year
# as the rgi is often from snow free images the year before (e.g. Aug)
ys = rgi_year + 1
if ys <= rgi_year and init_model_filesuffix is None:
log.warning('You are attempting to run_with_climate_data at dates '
'prior to the RGI inventory date. This may indicate some '
'problem in your workflow. Consider using '
'`fixed_geometry_spinup_yr` for example.')
# Final crop
if min_ys is not None:
ys = ys if ys > min_ys else min_ys
if max_ys is not None:
ys = ys if ys < max_ys else max_ys
if mb_model is None:
mb_model = MultipleFlowlineMassBalance(gdir,
mb_model_class=mb_model_class,
filename=climate_filename,
bias=bias,
input_filesuffix=climate_input_filesuffix)
if temperature_bias is not None:
mb_model.temp_bias += temperature_bias
if precipitation_factor is not None:
mb_model.prcp_fac *= precipitation_factor
if ye is None:
# Decide from climate (we can run the last year with data as well)
ye = mb_model.flowline_mb_models[0].ye + 1
return flowline_model_run(gdir, output_filesuffix=output_filesuffix,
mb_model=mb_model, ys=ys, ye=ye,
store_monthly_step=store_monthly_step,
store_model_geometry=store_model_geometry,
store_fl_diagnostics=store_fl_diagnostics,
init_model_fls=init_model_fls,
zero_initial_glacier=zero_initial_glacier,
fixed_geometry_spinup_yr=fixed_geometry_spinup_yr,
**kwargs)
[docs]
@entity_task(log)
def run_with_hydro(gdir, run_task=None, store_monthly_hydro=False,
fixed_geometry_spinup_yr=None, ref_area_from_y0=False,
ref_area_yr=None, ref_geometry_filesuffix=None,
**kwargs):
"""Run the flowline model and add hydro diagnostics.
TODOs:
- Add the possibility to record MB during run to improve performance
(requires change in API)
- ...
Parameters
----------
run_task : func
any of the `run_*`` tasks in the oggm.flowline module.
The mass balance model used needs to have the `add_climate` output
kwarg available though.
store_monthly_hydro : bool
also compute monthly hydrological diagnostics. The monthly outputs
are stored in 2D fields (years, months)
ref_area_yr : int
the hydrological output is computed over a reference area, which
per default is the largest area covered by the glacier in the simulation
period. Use this kwarg to force a specific area to the state of the
glacier at the provided simulation year.
ref_area_from_y0 : bool
overwrite ref_area_yr to the first year of the timeseries
ref_geometry_filesuffix : str
this kwarg allows to copy the reference area from a previous simulation
(useful for projections with historical spinup for example).
Set to a model_geometry file filesuffix that is present in the
current directory (e.g. `_historical` for pre-processed gdirs).
If set, ref_area_yr and ref_area_from_y0 refer to this file instead.
fixed_geometry_spinup_yr : int
if set to an integer, the model will artificially prolongate
all outputs of run_until_and_store to encompass all time stamps
starting from the chosen year. The only output affected are the
glacier wide diagnostic files - all other outputs are set
to constants during "spinup"
**kwargs : all valid kwargs for ``run_task``
"""
# Make sure it'll return something
kwargs['return_value'] = True
# Check that kwargs and params are compatible
if kwargs.get('store_monthly_step', False):
raise InvalidParamsError('run_with_hydro only compatible with '
'store_monthly_step=False.')
if kwargs.get('mb_elev_feedback', 'annual') != 'annual':
raise InvalidParamsError('run_with_hydro only compatible with '
"mb_elev_feedback='annual' (yes, even "
"when asked for monthly hydro output).")
if not cfg.PARAMS['store_model_geometry']:
raise InvalidParamsError('run_with_hydro only works with '
"PARAMS['store_model_geometry'] = True "
"for now.")
if fixed_geometry_spinup_yr is not None:
kwargs['fixed_geometry_spinup_yr'] = fixed_geometry_spinup_yr
out = run_task(gdir, **kwargs)
if out is None:
raise InvalidWorkflowError('The run task ({}) did not run '
'successfully.'.format(run_task.__name__))
do_spinup = fixed_geometry_spinup_yr is not None
if do_spinup:
start_dyna_model_yr = out.y0
# Mass balance model used during the run
mb_mod = out.mb_model
# Glacier geometry during the run
suffix = kwargs.get('output_filesuffix', '')
# We start by fetching the reference model geometry
# The one we just computed
fmod = FileModel(gdir.get_filepath('model_geometry', filesuffix=suffix))
# The last one is the final state - we can't compute MB for that
years = fmod.years[:-1]
if ref_geometry_filesuffix:
if not ref_area_from_y0 and ref_area_yr is None:
raise InvalidParamsError('If `ref_geometry_filesuffix` is set, '
'users need to specify `ref_area_from_y0`'
' or `ref_area_yr`')
# User provided
fmod_ref = FileModel(gdir.get_filepath('model_geometry',
filesuffix=ref_geometry_filesuffix))
else:
# ours as well
fmod_ref = fmod
# Check input
if ref_area_from_y0:
ref_area_yr = fmod_ref.years[0]
# Geometry at year yr to start with + off-glacier snow bucket
if ref_area_yr is not None:
if ref_area_yr not in fmod_ref.years:
raise InvalidParamsError('The chosen ref_area_yr is not '
'available!')
fmod_ref.run_until(ref_area_yr)
bin_area_2ds = []
bin_elev_2ds = []
ref_areas = []
snow_buckets = []
for fl in fmod_ref.fls:
# Glacier area on bins
bin_area = fl.bin_area_m2
ref_areas.append(bin_area)
snow_buckets.append(bin_area * 0)
# Output 2d data
shape = len(years), len(bin_area)
bin_area_2ds.append(np.empty(shape, np.float64))
bin_elev_2ds.append(np.empty(shape, np.float64))
# Ok now fetch all geometry data in a first loop
# We do that because we might want to get the largest possible area (default)
# and we want to minimize the number of calls to run_until
for i, yr in enumerate(years):
fmod.run_until(yr)
for fl_id, (fl, bin_area_2d, bin_elev_2d) in \
enumerate(zip(fmod.fls, bin_area_2ds, bin_elev_2ds)):
# Time varying bins
bin_area_2d[i, :] = fl.bin_area_m2
bin_elev_2d[i, :] = fl.surface_h
if ref_area_yr is None:
# Ok we get the max area instead
for ref_area, bin_area_2d in zip(ref_areas, bin_area_2ds):
ref_area[:] = bin_area_2d.max(axis=0)
# Ok now we have arrays, we can work with that
# -> second time varying loop is for mass balance
months = [1]
seconds = cfg.SEC_IN_YEAR
ntime = len(years) + 1
oshape = (ntime, 1)
if store_monthly_hydro:
months = np.arange(1, 13)
seconds = cfg.SEC_IN_MONTH
oshape = (ntime, 12)
out = {
'off_area': {
'description': 'Off-glacier area',
'unit': 'm 2',
'data': np.zeros(ntime),
},
'on_area': {
'description': 'On-glacier area',
'unit': 'm 2',
'data': np.zeros(ntime),
},
'melt_off_glacier': {
'description': 'Off-glacier melt',
'unit': 'kg yr-1',
'data': np.zeros(oshape),
},
'melt_on_glacier': {
'description': 'On-glacier melt',
'unit': 'kg yr-1',
'data': np.zeros(oshape),
},
'melt_residual_off_glacier': {
'description': 'Off-glacier melt due to MB model residual',
'unit': 'kg yr-1',
'data': np.zeros(oshape),
},
'melt_residual_on_glacier': {
'description': 'On-glacier melt due to MB model residual',
'unit': 'kg yr-1',
'data': np.zeros(oshape),
},
'liq_prcp_off_glacier': {
'description': 'Off-glacier liquid precipitation',
'unit': 'kg yr-1',
'data': np.zeros(oshape),
},
'liq_prcp_on_glacier': {
'description': 'On-glacier liquid precipitation',
'unit': 'kg yr-1',
'data': np.zeros(oshape),
},
'snowfall_off_glacier': {
'description': 'Off-glacier solid precipitation',
'unit': 'kg yr-1',
'data': np.zeros(oshape),
},
'snowfall_on_glacier': {
'description': 'On-glacier solid precipitation',
'unit': 'kg yr-1',
'data': np.zeros(oshape),
},
'snow_bucket': {
'description': 'Off-glacier snow reservoir (state variable)',
'unit': 'kg',
'data': np.zeros(oshape),
},
'model_mb': {
'description': 'Annual mass balance from dynamical model',
'unit': 'kg yr-1',
'data': np.zeros(ntime),
},
'residual_mb': {
'description': 'Difference (before correction) between mb model and dyn model melt',
'unit': 'kg yr-1',
'data': np.zeros(oshape),
},
}
# Initialize
fmod.run_until(years[0])
prev_model_vol = fmod.volume_m3
for i, yr in enumerate(years):
# Now the loop over the months
for m in months:
# A bit silly but avoid double counting in monthly ts
off_area_out = 0
on_area_out = 0
for fl_id, (ref_area, snow_bucket, bin_area_2d, bin_elev_2d) in \
enumerate(zip(ref_areas, snow_buckets, bin_area_2ds, bin_elev_2ds)):
bin_area = bin_area_2d[i, :]
bin_elev = bin_elev_2d[i, :]
# Make sure we have no negative contribution when glaciers are out
off_area = utils.clip_min(ref_area - bin_area, 0)
try:
if store_monthly_hydro:
flt_yr = utils.date_to_floatyear(int(yr), m)
mb_out = mb_mod.get_monthly_mb(bin_elev, fl_id=fl_id,
year=flt_yr,
add_climate=True)
mb, _, _, prcp, prcpsol = mb_out
else:
mb_out = mb_mod.get_annual_mb(bin_elev, fl_id=fl_id,
year=yr, add_climate=True)
mb, _, _, prcp, prcpsol = mb_out
except ValueError as e:
if 'too many values to unpack' in str(e):
raise InvalidWorkflowError('Run with hydro needs a MB '
'model able to add climate '
'info to `get_annual_mb`.')
raise
# Here we use mass (kg yr-1) not ice volume
mb *= seconds * cfg.PARAMS['ice_density']
# Bias of the mb model is a fake melt term that we need to deal with
# This is here for correction purposes later
mb_bias = mb_mod.bias * seconds / cfg.SEC_IN_YEAR
liq_prcp_on_g = (prcp - prcpsol) * bin_area
liq_prcp_off_g = (prcp - prcpsol) * off_area
prcpsol_on_g = prcpsol * bin_area
prcpsol_off_g = prcpsol * off_area
# IMPORTANT: this does not guarantee that melt cannot be negative
# the reason is the MB residual that here can only be understood
# as a fake melt process.
# In particular at the monthly scale this can lead to negative
# or winter positive melt - we try to mitigate this
# issue at the end of the year
melt_on_g = (prcpsol - mb) * bin_area
melt_off_g = (prcpsol - mb) * off_area
if mb_mod.bias == 0:
# melt_on_g and melt_off_g can be negative, but the absolute
# values are very small. so we clip them to zero
melt_on_g = utils.clip_min(melt_on_g, 0)
melt_off_g = utils.clip_min(melt_off_g, 0)
# This is the bad boy
bias_on_g = mb_bias * bin_area
bias_off_g = mb_bias * off_area
# Update bucket with accumulation and melt
snow_bucket += prcpsol_off_g
# It can only melt that much
melt_off_g = np.where((snow_bucket - melt_off_g) >= 0, melt_off_g, snow_bucket)
# Update bucket
snow_bucket -= melt_off_g
# This is recomputed each month but well
off_area_out += np.sum(off_area)
on_area_out += np.sum(bin_area)
# Monthly out
out['melt_off_glacier']['data'][i, m-1] += np.sum(melt_off_g)
out['melt_on_glacier']['data'][i, m-1] += np.sum(melt_on_g)
out['melt_residual_off_glacier']['data'][i, m-1] += np.sum(bias_off_g)
out['melt_residual_on_glacier']['data'][i, m-1] += np.sum(bias_on_g)
out['liq_prcp_off_glacier']['data'][i, m-1] += np.sum(liq_prcp_off_g)
out['liq_prcp_on_glacier']['data'][i, m-1] += np.sum(liq_prcp_on_g)
out['snowfall_off_glacier']['data'][i, m-1] += np.sum(prcpsol_off_g)
out['snowfall_on_glacier']['data'][i, m-1] += np.sum(prcpsol_on_g)
# Snow bucket is a state variable - stored at end of timestamp
if store_monthly_hydro:
if m == 12:
out['snow_bucket']['data'][i+1, 0] += np.sum(snow_bucket)
else:
out['snow_bucket']['data'][i, m] += np.sum(snow_bucket)
else:
out['snow_bucket']['data'][i+1, m-1] += np.sum(snow_bucket)
# Update the annual data
out['off_area']['data'][i] = off_area_out
out['on_area']['data'][i] = on_area_out
# If monthly, put the residual where we can
if store_monthly_hydro and mb_mod.bias != 0:
for melt, bias in zip(
[
out['melt_on_glacier']['data'][i, :],
out['melt_off_glacier']['data'][i, :],
],
[
out['melt_residual_on_glacier']['data'][i, :],
out['melt_residual_off_glacier']['data'][i, :],
],
):
real_melt = melt - bias
to_correct = utils.clip_min(real_melt, 0)
to_correct_sum = np.sum(to_correct)
if (to_correct_sum > 1e-7) and (np.sum(melt) > 0):
# Ok we correct the positive melt instead
fac = np.sum(melt) / to_correct_sum
melt[:] = to_correct * fac
if do_spinup and yr < start_dyna_model_yr:
residual_mb = 0
model_mb = (out['snowfall_on_glacier']['data'][i, :].sum() -
out['melt_on_glacier']['data'][i, :].sum())
else:
# Correct for mass-conservation and match the ice-dynamics model
fmod.run_until(yr + 1)
model_mb = (fmod.volume_m3 - prev_model_vol) * cfg.PARAMS['ice_density']
prev_model_vol = fmod.volume_m3
reconstructed_mb = (out['snowfall_on_glacier']['data'][i, :].sum() -
out['melt_on_glacier']['data'][i, :].sum())
residual_mb = model_mb - reconstructed_mb
# Now correct
g_melt = out['melt_on_glacier']['data'][i, :]
if residual_mb == 0:
pass
elif store_monthly_hydro:
# We try to correct the melt only where there is some
asum = g_melt.sum()
if asum > 1e-7 and (residual_mb / asum < 1):
# try to find a fac
fac = 1 - residual_mb / asum
# fac should always be positive, otherwise melt_on_glacier
# gets negative. This is always true, because we only do the
# correction if residual_mb / asum < 1
corr = g_melt * fac
residual_mb = g_melt - corr
out['melt_on_glacier']['data'][i, :] = corr
else:
# We simply spread over the months
residual_mb /= 12
# residual_mb larger > melt_on_glacier
# add absolute difference to snowfall (--=+, mass conservation)
out['snowfall_on_glacier']['data'][i, :] -= utils.clip_max(g_melt - residual_mb, 0)
# assure that new melt_on_glacier is non-negative
out['melt_on_glacier']['data'][i, :] = utils.clip_min(g_melt - residual_mb, 0)
else:
# We simply apply the residual - no choice here
# residual_mb larger > melt_on_glacier:
# add absolute difference to snowfall (--=+, mass conservation)
out['snowfall_on_glacier']['data'][i, :] -= utils.clip_max(g_melt - residual_mb, 0)
# assure that new melt_on_glacier is non-negative
out['melt_on_glacier']['data'][i, :] = utils.clip_min(g_melt - residual_mb, 0)
out['model_mb']['data'][i] = model_mb
out['residual_mb']['data'][i] = residual_mb
# Convert to xarray
out_vars = cfg.PARAMS['store_diagnostic_variables']
ods = xr.Dataset()
ods.coords['time'] = fmod.years
if store_monthly_hydro:
ods.coords['month_2d'] = ('month_2d', np.arange(1, 13))
# For the user later
sm = cfg.PARAMS['hydro_month_' + mb_mod.hemisphere]
ods.coords['hydro_month_2d'] = ('month_2d', (np.arange(12) + 12 - sm + 1) % 12 + 1)
ods.coords['calendar_month_2d'] = ('month_2d', np.arange(1, 13))
for varname, d in out.items():
data = d.pop('data')
if varname not in out_vars:
continue
if len(data.shape) == 2:
# First the annual agg
if varname == 'snow_bucket':
# Snowbucket is a state variable
ods[varname] = ('time', data[:, 0])
else:
# Last year is never good
data[-1, :] = np.nan
ods[varname] = ('time', np.sum(data, axis=1))
# Then the monthly ones
if store_monthly_hydro:
ods[varname + '_monthly'] = (('time', 'month_2d'), data)
else:
assert varname != 'snow_bucket'
data[-1] = np.nan
ods[varname] = ('time', data)
for k, v in d.items():
ods[varname].attrs[k] = v
if store_monthly_hydro and (varname + '_monthly') in ods:
ods[varname + '_monthly'].attrs[k] = v
# Append the output to the existing diagnostics
fpath = gdir.get_filepath('model_diagnostics', filesuffix=suffix)
ods.to_netcdf(fpath, mode='a')
def zero_glacier_stop_criterion(model, state, n_zero=5, n_years=20):
"""Stop the simulation when the glacier volume is zero for a given period
To be passed as kwarg to `run_until_and_store`.
Parameters
----------
model : the model class
state : a dict
n_zero : number of 0 volume years
n_years : number of years to consider
Returns
-------
stop (True/False), new_state
"""
if state is None:
# OK first call
state = {}
if 'was_zero' not in state:
# Maybe the state is from another criteria
state['was_zero'] = []
if model.yr != int(model.yr):
# We consider only full model years
return False, state
if model.volume_m3 == 0:
if len(state['was_zero']) < n_years:
return False, state
if np.sum(state['was_zero'][-n_years:]) >= n_zero - 1:
return True, state
else:
state['was_zero'] = np.append(state['was_zero'], [True])
else:
state['was_zero'] = np.append(state['was_zero'], [False])
return False, state
def spec_mb_stop_criterion(model, state, spec_mb_threshold=50, n_years=60):
"""Stop the simulation when the specific MB is close to zero for a given period.
To be passed as kwarg to `run_until_and_store`.
Parameters
----------
model : the model class
state : a dict
spec_mb_threshold : the specific MB threshold (in mm w.e. per year)
n_years : number of years to consider
Returns
-------
stop (True/False), new_state
"""
if state is None:
# OK first call
state = {}
if 'spec_mb' not in state:
# Maybe the state is from another criteria
state['spec_mb'] = []
state['volume_m3'] = []
if model.yr != int(model.yr):
# We consider only full model years
return False, state
area = model.area_m2
volume = model.volume_m3
if area < 1 or len(state['volume_m3']) == 0:
spec_mb = np.nan
else:
spec_mb = (volume - state['volume_m3'][-1]) / area * cfg.PARAMS['ice_density']
state['spec_mb'] = np.append(state['spec_mb'], [spec_mb])
state['volume_m3'] = np.append(state['volume_m3'], [volume])
if len(state['spec_mb']) < n_years:
return False, state
mbavg = np.nanmean(state['spec_mb'][-n_years:])
if abs(mbavg) <= spec_mb_threshold:
return True, state
else:
return False, state
def equilibrium_stop_criterion(model, state,
spec_mb_threshold=50, n_years_specmb=60,
n_zero=5, n_years_zero=20):
"""Stop the simulation when of og spec_mb and zero_volume criteria are met.
To be passed as kwarg to `run_until_and_store`.
Parameters
----------
model : the model class
state : a dict
spec_mb_threshold : the specific MB threshold (in mm w.e. per year)
n_years_specmb : number of years to consider for the spec_mb criterion
n_zero : number of 0 volume years
n_years_zero : number of years to consider for the zero volume criterion.
Returns
-------
stop (True/False), new_state
"""
if state is None:
# OK first call
state = {}
s1, state = zero_glacier_stop_criterion(model, state, n_years=n_years_zero,
n_zero=n_zero)
s2, state = spec_mb_stop_criterion(model, state, n_years=n_years_specmb,
spec_mb_threshold=spec_mb_threshold)
return s1 or s2, state
def merge_to_one_glacier(main, tribs, filename='climate_historical',
input_filesuffix=''):
"""Merge multiple tributary glacier flowlines to a main glacier
This function will merge multiple tributary glaciers to a main glacier
and write modified `model_flowlines` to the main GlacierDirectory.
The provided tributaries must have an intersecting downstream line.
To be sure about this, use `intersect_downstream_lines` first.
This function is mainly responsible to reproject the flowlines, set
flowline attributes and to copy additional files, like the necessary climate
files.
Parameters
----------
main : oggm.GlacierDirectory
The new GDir of the glacier of interest
tribs : list or dictionary containing oggm.GlacierDirectories
true tributary glaciers to the main glacier
filename: str
Baseline climate file
input_filesuffix: str
Filesuffix to the climate file
"""
# read flowlines of the Main glacier
fls = main.read_pickle('model_flowlines')
mfl = fls.pop(-1) # remove main line from list and treat separately
for trib in tribs:
# read tributary flowlines and append to list
tfls = trib.read_pickle('model_flowlines')
# copy climate file and calib to new gdir
# if we have a merge-merge situation we need to copy multiple files
rgiids = set([fl.rgi_id for fl in tfls])
for uid in rgiids:
if len(rgiids) == 1:
# we do not have a merge-merge situation
in_id = ''
out_id = trib.rgi_id
else:
in_id = '_' + uid
out_id = uid
climfile_in = filename + in_id + input_filesuffix + '.nc'
climfile_out = filename + '_' + out_id + input_filesuffix + '.nc'
shutil.copyfile(os.path.join(trib.dir, climfile_in),
os.path.join(main.dir, climfile_out))
_m = os.path.basename(trib.get_filepath('mb_calib')).split('.')
muin = _m[0] + in_id + '.' + _m[1]
muout = _m[0] + '_' + out_id + '.' + _m[1]
shutil.copyfile(os.path.join(trib.dir, muin),
os.path.join(main.dir, muout))
# sort flowlines descending
tfls.sort(key=lambda x: x.order, reverse=True)
# loop over tributaries and reproject to main glacier
for nr, tfl in enumerate(tfls):
# 1. Step: Change projection to the main glaciers grid
_line = salem.transform_geometry(tfl.line,
crs=trib.grid, to_crs=main.grid)
# 2. set new line
tfl.set_line(_line)
# 3. set map attributes
dx = [shpg.Point(tfl.line.coords[i]).distance(
shpg.Point(tfl.line.coords[i+1]))
for i, pt in enumerate(tfl.line.coords[:-1])] # get distance
# and check if equally spaced
if not np.allclose(dx, np.mean(dx), atol=1e-2):
raise RuntimeError('Flowline is not evenly spaced.')
tfl.dx = np.mean(dx).round(2)
tfl.map_dx = mfl.map_dx
tfl.dx_meter = tfl.map_dx * tfl.dx
# 3. remove attributes, they will be set again later
tfl.inflow_points = []
tfl.inflows = []
# 4. set flows to, mainly to update flows_to_point coordinates
if tfl.flows_to is not None:
tfl.set_flows_to(tfl.flows_to)
# append tributary flowlines to list
fls += tfls
# add main flowline to the end
fls = fls + [mfl]
# Finally write the flowlines
main.write_pickle(fls, 'model_flowlines')
def clean_merged_flowlines(gdir, buffer=None):
"""Order and cut merged flowlines to size.
After matching flowlines were found and merged to one glacier directory
this function makes them nice:
There should only be one flowline per bed, so overlapping lines have to be
cut, attributed to a another flowline and ordered.
Parameters
----------
gdir : oggm.GlacierDirectory
The GDir of the glacier of interest
buffer: float
Buffer around the flowlines to find overlaps
"""
# No buffer does not work
if buffer is None:
buffer = cfg.PARAMS['kbuffer']
# Number of pixels to arbitrarily remove at junctions
lid = int(cfg.PARAMS['flowline_junction_pix'])
fls = gdir.read_pickle('model_flowlines')
# separate the main main flowline
mainfl = fls.pop(-1)
# split fls in main and tribs
mfls = [fl for fl in fls if fl.flows_to is None]
tfls = [fl for fl in fls if fl not in mfls]
# --- first treat the main flowlines ---
# sort by order and length as a second choice
mfls.sort(key=lambda x: (x.order, len(x.inflows), x.length_m),
reverse=False)
merged = []
# for fl1 in mfls:
while len(mfls) > 0:
fl1 = mfls.pop(0)
ol_index = [] # list of index from first overlap
# loop over other main lines and main main line
for fl2 in mfls + [mainfl]:
# calculate overlap, maybe use larger buffer here only to find it
_overlap = fl1.line.intersection(fl2.line.buffer(buffer*2))
# calculate indice of first overlap if overlap length > 0
oix = 9999
if _overlap.length > 0 and fl1 != fl2 and fl2.flows_to != fl1:
if isinstance(_overlap, shpg.MultiLineString):
if _overlap.geoms[0].coords[0] == fl1.line.coords[0]:
# if the head of overlap is same as the first line,
# best guess is, that the heads are close topgether!
_ov1 = _overlap.geoms[1].coords[1]
else:
_ov1 = _overlap.geoms[0].coords[1]
else:
_ov1 = _overlap.coords[1]
for _i, _p in enumerate(fl1.line.coords):
if _p == _ov1:
oix = _i
# low indices are more likely due to an wrong overlap
if oix < 10:
oix = 9999
ol_index.append(oix)
ol_index = np.array(ol_index)
if np.all(ol_index == 9999):
log.warning('Glacier %s could not be merged, removed!' %
fl1.rgi_id)
# remove possible tributary flowlines
tfls = [fl for fl in tfls if fl.rgi_id != fl1.rgi_id]
# skip rest of this while loop
continue
# make this based on first overlap, but consider order and or length
minx = ol_index[ol_index <= ol_index.min()+10][-1]
i = np.where(ol_index == minx)[0][-1]
_olline = (mfls + [mainfl])[i]
# 1. cut line to size
_line = fl1.line
bufferuse = buffer
while bufferuse > 0:
_overlap = _line.intersection(_olline.line.buffer(bufferuse))
_linediff = _line.difference(_overlap) # cut to new line
# if the tributary flowline is longer than the main line,
# _line will contain multiple LineStrings: only keep the first
if isinstance(_linediff, shpg.MultiLineString):
_linediff = _linediff.geoms[0]
if len(_linediff.coords) < 10:
bufferuse -= 1
else:
break
if bufferuse <= 0:
log.warning('Glacier %s would be to short after merge, removed!' %
fl1.rgi_id)
# remove possible tributary flowlines
tfls = [fl for fl in tfls if fl.rgi_id != fl1.rgi_id]
# skip rest of this while loop
continue
# remove cfg.PARAMS['flowline_junction_pix'] from the _line
# gives a bigger gap at the junction and makes sure the last
# point is not corrupted in terms of spacing
_line = shpg.LineString(_linediff.coords[:-lid])
# 2. set new line
fl1.set_line(_line)
# 3. set flow to attributes. This also adds inflow values to other
fl1.set_flows_to(_olline)
# change the array size of tributary flowline attributes
for atr, value in fl1.__dict__.items():
if atr in ['_ptrap', '_prec']:
# those are indices, remove those above nx
fl1.__setattr__(atr, value[value < fl1.nx])
elif isinstance(value, np.ndarray) and (len(value) > fl1.nx):
# those are actual parameters on the grid
fl1.__setattr__(atr, value[:fl1.nx])
merged.append(fl1)
allfls = merged + tfls
# now check all lines for possible cut offs
for fl in allfls:
try:
fl.flows_to_indice
except AssertionError:
mfl = fl.flows_to
# remove it from original
mfl.inflow_points.remove(fl.flows_to_point)
mfl.inflows.remove(fl)
prdis = mfl.line.project(fl.tail)
mfl_keep = mfl
while mfl.flows_to is not None:
prdis2 = mfl.flows_to.line.project(fl.tail)
if prdis2 < prdis:
mfl_keep = mfl
prdis = prdis2
mfl = mfl.flows_to
# we should be good to add this line here
fl.set_flows_to(mfl_keep.flows_to)
allfls = allfls + [mainfl]
for fl in allfls:
fl.inflows = []
fl.inflow_points = []
if hasattr(fl, '_lazy_flows_to_indice'):
delattr(fl, '_lazy_flows_to_indice')
if hasattr(fl, '_lazy_inflow_indices'):
delattr(fl, '_lazy_inflow_indices')
for fl in allfls:
if fl.flows_to is not None:
fl.set_flows_to(fl.flows_to)
for fl in allfls:
fl.order = line_order(fl)
# order flowlines in descending way
allfls.sort(key=lambda x: x.order, reverse=False)
# assert last flowline is main flowline
assert allfls[-1] == mainfl
# Finally write the flowlines
gdir.write_pickle(allfls, 'model_flowlines')