Source code for oggm.core.flowline

"""Flowline modelling: bed shapes and model numerics.


"""
# Builtins
import logging
import copy
from collections import OrderedDict
from functools import partial
from time import gmtime, strftime
import os
import shutil
import warnings

# External libs
import numpy as np
import shapely.geometry as shpg
import xarray as xr
from scipy.linalg import solve_banded

# Optional libs
try:
    import salem
except ImportError:
    pass
import pandas as pd

# Locals
from oggm import __version__
import oggm.cfg as cfg
from oggm import utils
from oggm import entity_task
from oggm.exceptions import InvalidParamsError, InvalidWorkflowError
from oggm.core.massbalance import (MultipleFlowlineMassBalance,
                                   ConstantMassBalance,
                                   MonthlyTIModel,
                                   RandomMassBalance)
from oggm.core.centerlines import Centerline, line_order
from oggm.core.inversion import find_sia_flux_from_thickness

# Constants
from oggm.cfg import SEC_IN_DAY, SEC_IN_YEAR
from oggm.cfg import G, GAUSSIAN_KERNEL

# Module logger
log = logging.getLogger(__name__)


[docs] class Flowline(Centerline): """A Centerline with additional properties: input to the FlowlineModel """
[docs] def __init__(self, line=None, dx=1, map_dx=None, surface_h=None, bed_h=None, rgi_id=None, water_level=None, gdir=None): """ Initialize a Flowline Parameters ---------- line : :py:class:`shapely.geometry.LineString` the geometrical line of a :py:class:`oggm.Centerline` dx : float Grid spacing in pixel coordinates map_dx : float DEM grid spacing in meters surface_h: :py:class:`numpy.ndarray` elevation [m] of the flowline grid points bed_h: :py:class:`numpy.ndarray` elevation[m] of the bedrock at the flowline grid points rgi_id : str The glacier's RGI identifier water_level : float The water level (to compute volume below sea-level) """ # This is do add flexibility for testing if dx is None: dx = 1. if line is None: coords = np.arange(len(surface_h)) * dx line = shpg.LineString(np.vstack([coords, coords * 0.]).T) super(Flowline, self).__init__(line, dx, surface_h) self._thick = utils.clip_min(surface_h - bed_h, 0.) self.map_dx = map_dx self.dx_meter = map_dx * self.dx self.bed_h = bed_h self.rgi_id = rgi_id self.water_level = water_level self._point_lons = None self._point_lats = None self.map_trafo = None if gdir is not None: self.map_trafo = partial(gdir.grid.ij_to_crs, crs=salem.wgs84) # volume not yet removed from the flowline self.calving_bucket_m3 = 0
def has_ice(self): return np.any(self.thick > 0) @utils.lazy_property def water_depth(self): return utils.clip_min(self.water_level - self.bed_h, 0) @utils.lazy_property def bed_below_wl(self): return self.bed_h < self.water_level @Centerline.widths.getter def widths(self): """Compute the widths out of H and shape""" return self.widths_m / self.map_dx @property def thick(self): """Needed for overriding later""" return self._thick @thick.setter def thick(self, value): self._thick = utils.clip_min(value, 0) @Centerline.surface_h.getter def surface_h(self): return self._thick + self.bed_h @surface_h.setter def surface_h(self, value): self.thick = value - self.bed_h @property def bin_area_m2(self): # area of the grid point # this takes the ice thickness into account return np.where(self.thick > 0, self.widths_m, 0) * self.dx_meter @property def length_m(self): # TODO: take calving bucket into account for fine tuned length? lt = cfg.PARAMS.get('min_ice_thick_for_length', 0) if cfg.PARAMS.get('glacier_length_method') == 'consecutive': if (self.thick > lt).all(): nx = len(self.thick) else: nx = np.where(self.thick <= lt)[0][0] else: nx = len(np.where(self.thick > lt)[0]) return nx * self.dx_meter @property def terminus_index(self): # the index of the last point with ice thickness above # min_ice_thick_for_length and consistent with length lt = cfg.PARAMS.get('min_ice_thick_for_length', 0) if cfg.PARAMS.get('glacier_length_method') == 'consecutive': if (self.thick > lt).all(): ix = len(self.thick) - 1 else: ix = np.where(self.thick <= lt)[0][0] - 1 else: try: ix = np.where(self.thick > lt)[0][-1] except IndexError: ix = -1 return ix def _compute_point_lls(self): if getattr(self, '_point_lons', None) is None: if getattr(self, 'map_trafo', None) is None: raise AttributeError('Cannot compute lons and lats on this ' 'flowline. It needs to be initialized ' 'with a gdir kwarg.') lons, lats = self.map_trafo(*self.line.xy) self._point_lons = lons self._point_lats = lats @property def point_lons(self): self._compute_point_lls() return self._point_lons @property def point_lats(self): self._compute_point_lls() return self._point_lats @property def volume_m3(self): return utils.clip_min(np.sum(self.section * self.dx_meter) - getattr(self, 'calving_bucket_m3', 0), 0) @property def volume_km3(self): return self.volume_m3 * 1e-9 def _vol_below_level(self, water_level=0): thick = np.copy(self.thick) n_thick = np.copy(thick) bwl = (self.bed_h < water_level) & (thick > 0) n_thick[~bwl] = 0 self.thick = n_thick vol_tot = np.sum(self.section * self.dx_meter) n_thick[bwl] = utils.clip_max(self.surface_h[bwl], water_level) - self.bed_h[bwl] self.thick = n_thick vol_bwl = np.sum(self.section * self.dx_meter) self.thick = thick fac = vol_bwl / vol_tot if vol_tot > 0 else 0 return utils.clip_min(vol_bwl - getattr(self, 'calving_bucket_m3', 0) * fac, 0) @property def volume_bsl_m3(self): return self._vol_below_level(water_level=0) @property def volume_bsl_km3(self): return self.volume_bsl_m3 * 1e-9 @property def volume_bwl_m3(self): return self._vol_below_level(water_level=self.water_level) @property def volume_bwl_km3(self): return self.volume_bwl_m3 * 1e-9 @property def area_m2(self): # TODO: take calving bucket into account return np.sum(self.bin_area_m2) @property def area_km2(self): return self.area_m2 * 1e-6 def _add_attrs_to_dataset(self, ds): """Add bed specific parameters.""" # This must be done by child classes raise NotImplementedError() def to_geometry_dataset(self): """Makes an xarray Dataset out of the flowline. Useful only for geometry files (FileModel / restart files), therefore a bit cryptic regarding dimensions. """ h = self.surface_h nx = len(h) ds = xr.Dataset() ds.coords['x'] = np.arange(nx) ds.coords['c'] = [0, 1] try: ds['linecoords'] = (['x', 'c'], np.asarray(self.line.coords)) except AttributeError: # squeezed lines pass ds['surface_h'] = (['x'], h) ds['bed_h'] = (['x'], self.bed_h) ds.attrs['class'] = type(self).__name__ ds.attrs['map_dx'] = self.map_dx ds.attrs['dx'] = self.dx self._add_attrs_to_dataset(ds) return ds def to_diagnostics_dataset(self): """Makes an xarray Dataset out of the flowline. Useful for run_until_and_store's flowline diagnostics data. """ h = self.bed_h nx = len(h) ds = xr.Dataset() ds.coords['dis_along_flowline'] = np.arange(nx) * self.map_dx * self.dx try: # This is a bit bad design, but basically if some task # computed to the lons of the flowlines before, use it # we don't have access to gdir here so we cant convert the coords ds['point_lons'] = (['dis_along_flowline'], self.point_lons) ds['point_lons'].attrs['description'] = 'Longitude along the flowline' ds['point_lons'].attrs['unit'] = 'deg' ds['point_lats'] = (['dis_along_flowline'], self.point_lats) ds['point_lats'].attrs['description'] = 'Latitude along the flowline' ds['point_lats'].attrs['unit'] = 'deg' except AttributeError: # squeezed lines or we haven't computed lons and lats yet pass ds['bed_h'] = (['dis_along_flowline'], h) ds['bed_h'].attrs['description'] = 'Bed elevation along the flowline' ds['bed_h'].attrs['unit'] = 'm' ds.attrs['class'] = type(self).__name__ ds.attrs['map_dx'] = self.map_dx ds.attrs['dx'] = self.dx return ds
[docs] class ParabolicBedFlowline(Flowline): """A parabolic shaped Flowline with one degree of freedom """
[docs] def __init__(self, line=None, dx=None, map_dx=None, surface_h=None, bed_h=None, bed_shape=None, rgi_id=None, water_level=None, gdir=None): """ Instantiate. Parameters ---------- line : :py:class:`shapely.geometry.LineString` the geometrical line of a :py:class:`oggm.Centerline` """ super(ParabolicBedFlowline, self).__init__(line, dx, map_dx, surface_h, bed_h, rgi_id=rgi_id, water_level=water_level, gdir=gdir) assert np.all(np.isfinite(bed_shape)) self.bed_shape = bed_shape
@property def widths_m(self): """Compute the widths out of H and shape""" return np.sqrt(4*self.thick/self.bed_shape) @property def section(self): return 2./3. * self.widths_m * self.thick @section.setter def section(self, val): self.thick = (0.75 * val * np.sqrt(self.bed_shape))**(2./3.) @utils.lazy_property def shape_str(self): """The bed shape in text (for debug and other things)""" return np.repeat('parabolic', self.nx) def _add_attrs_to_dataset(self, ds): """Add bed specific parameters.""" ds['bed_shape'] = (['x'], self.bed_shape)
[docs] class RectangularBedFlowline(Flowline): """Simple shaped Flowline, glacier width does not change with ice thickness """
[docs] def __init__(self, line=None, dx=None, map_dx=None, surface_h=None, bed_h=None, widths=None, rgi_id=None, water_level=None, gdir=None): """ Instantiate. Parameters ---------- line : :py:class:`shapely.geometry.LineString` the geometrical line of a :py:class:`oggm.Centerline` """ super(RectangularBedFlowline, self).__init__(line, dx, map_dx, surface_h, bed_h, rgi_id=rgi_id, water_level=water_level, gdir=gdir) self._widths = widths
@property def widths_m(self): """Compute the widths out of H and shape""" return self._widths * self.map_dx @property def section(self): return self.widths_m * self.thick @section.setter def section(self, val): self.thick = val / self.widths_m @utils.lazy_property def shape_str(self): """The bed shape in text (for debug and other things)""" return np.repeat('rectangular', self.nx) def _add_attrs_to_dataset(self, ds): """Add bed specific parameters.""" ds['widths'] = (['x'], self._widths)
[docs] class TrapezoidalBedFlowline(Flowline): """A Flowline with trapezoidal shape and two degrees of freedom """
[docs] def __init__(self, line=None, dx=None, map_dx=None, surface_h=None, bed_h=None, widths=None, lambdas=None, rgi_id=None, water_level=None, gdir=None): """ Instantiate. Parameters ---------- line : :py:class:`shapely.geometry.LineString` the geometrical line of a :py:class:`oggm.Centerline` """ super(TrapezoidalBedFlowline, self).__init__(line, dx, map_dx, surface_h, bed_h, rgi_id=rgi_id, water_level=water_level, gdir=gdir) self._w0_m = widths * self.map_dx - lambdas * self.thick if np.any(self._w0_m <= 0): raise ValueError('Trapezoid beds need to have origin widths > 0.') self._prec = lambdas == 0 self._lambdas = lambdas
@property def widths_m(self): """Compute the widths out of H and shape""" return self._w0_m + self._lambdas * self.thick @property def section(self): return (self.widths_m + self._w0_m) / 2 * self.thick @section.setter def section(self, val): b = 2 * self._w0_m a = 2 * self._lambdas with np.errstate(divide='ignore', invalid='ignore'): thick = (np.sqrt(b**2 + 4 * a * val) - b) / a thick[self._prec] = val[self._prec] / self._w0_m[self._prec] self.thick = thick @utils.lazy_property def shape_str(self): """The bed shape in text (for debug and other things)""" return np.repeat('trapezoid', self.nx) def _add_attrs_to_dataset(self, ds): """Add bed specific parameters.""" ds['widths'] = (['x'], self.widths) ds['lambdas'] = (['x'], self._lambdas)
[docs] class MixedBedFlowline(Flowline): """A Flowline which can take a combination of different shapes (default) The default shape is parabolic. At ice divides a rectangular shape is used. And if the parabola gets too flat a trapezoidal shape is used. """
[docs] def __init__(self, *, line=None, dx=None, map_dx=None, surface_h=None, bed_h=None, section=None, bed_shape=None, is_trapezoid=None, lambdas=None, widths_m=None, rgi_id=None, water_level=None, gdir=None): """ Instantiate. Parameters ---------- line : :py:class:`shapely.geometry.LineString` the geometrical line of a :py:class:`oggm.Centerline` """ super(MixedBedFlowline, self).__init__(line=line, dx=dx, map_dx=map_dx, surface_h=surface_h.copy(), bed_h=bed_h.copy(), rgi_id=rgi_id, water_level=water_level, gdir=gdir) # To speedup calculations if no trapezoid bed is present self._do_trapeze = np.any(is_trapezoid) # Parabolic assert len(bed_shape) == self.nx self.bed_shape = bed_shape.copy() self._sqrt_bed = np.sqrt(bed_shape) # Trapeze assert len(lambdas) == self.nx assert len(is_trapezoid) == self.nx self._lambdas = lambdas.copy() self._ptrap = np.where(is_trapezoid)[0] self.is_trapezoid = is_trapezoid self.is_rectangular = self.is_trapezoid & (self._lambdas == 0) # Sanity self.bed_shape[is_trapezoid] = np.nan self._lambdas[~is_trapezoid] = np.nan # Here we have to compute the widths out of section and lambda thick = surface_h - bed_h with np.errstate(divide='ignore', invalid='ignore'): self._w0_m = section / thick - lambdas * thick / 2 assert np.all(section >= 0) need_w = (section == 0) & is_trapezoid if np.any(need_w): if widths_m is None: raise ValueError('We need a non-zero section for trapezoid ' 'shapes unless you provide widths_m.') self._w0_m[need_w] = widths_m[need_w] self._w0_m[~is_trapezoid] = np.nan if (np.any(self._w0_m[self._ptrap] <= 0) or np.any(~np.isfinite(self._w0_m[self._ptrap]))): raise ValueError('Trapezoid beds need to have origin widths > 0.') assert np.all(self.bed_shape[~is_trapezoid] > 0) self._prec = is_trapezoid & (lambdas == 0) assert np.allclose(section, self.section)
@property def widths_m(self): """Compute the widths out of H and shape""" out = np.sqrt(4*self.thick/self.bed_shape) if self._do_trapeze: out[self._ptrap] = (self._w0_m[self._ptrap] + self._lambdas[self._ptrap] * self.thick[self._ptrap]) return out @property def section(self): out = 2./3. * self.widths_m * self.thick if self._do_trapeze: out[self._ptrap] = ((self.widths_m[self._ptrap] + self._w0_m[self._ptrap]) / 2 * self.thick[self._ptrap]) return out @section.setter def section(self, val): out = (0.75 * val * self._sqrt_bed)**(2./3.) if self._do_trapeze: b = 2 * self._w0_m[self._ptrap] a = 2 * self._lambdas[self._ptrap] with np.errstate(divide='ignore', invalid='ignore'): out[self._ptrap] = ((np.sqrt(b ** 2 + 4 * a * val[self._ptrap]) - b) / a) out[self._prec] = val[self._prec] / self._w0_m[self._prec] self.thick = out @utils.lazy_property def shape_str(self): """The bed shape in text (for debug and other things)""" out = np.repeat('rectangular', self.nx) out[~ self.is_trapezoid] = 'parabolic' out[self.is_trapezoid & ~ self.is_rectangular] = 'trapezoid' return out def _add_attrs_to_dataset(self, ds): """Add bed specific parameters.""" ds['section'] = (['x'], self.section) ds['bed_shape'] = (['x'], self.bed_shape) ds['is_trapezoid'] = (['x'], self.is_trapezoid) ds['widths_m'] = (['x'], self._w0_m) ds['lambdas'] = (['x'], self._lambdas)
[docs] class FlowlineModel(object): """Interface to OGGM's flowline models"""
[docs] def __init__(self, flowlines, mb_model=None, y0=0., glen_a=None, fs=None, inplace=False, smooth_trib_influx=True, is_tidewater=False, is_lake_terminating=False, mb_elev_feedback='annual', check_for_boundaries=None, water_level=None, required_model_steps='monthly'): """Create a new flowline model from the flowlines and a MB model. Parameters ---------- flowlines : list a list of :py:class:`oggm.Flowline` instances, sorted by order mb_model : :py:class:`oggm.core.massbalance.MassBalanceModel` the MB model to use y0 : int the starting year of the simulation glen_a : float glen's parameter A fs: float sliding parameter inplace : bool whether or not to make a copy of the flowline objects for the run setting to True implies that your objects will be modified at run time by the model (can help to spare memory) smooth_trib_influx : bool whether to smooth the mass influx from the incoming tributary. The default is to use a gaussian kernel on a 9 grid points window. is_tidewater: bool, default: False is this a tidewater glacier? is_lake_terminating: bool, default: False is this a lake terminating glacier? mb_elev_feedback : str, default: 'annual' 'never', 'always', 'annual', or 'monthly': how often the mass balance should be recomputed from the mass balance model. 'Never' is equivalent to 'annual' but without elevation feedback at all (the heights are taken from the first call). check_for_boundaries : bool whether the model should raise an error when the glacier exceeds the domain boundaries. The default is to follow PARAMS['error_when_glacier_reaches_boundaries'] required_model_steps : str some Flowline models have an adaptive time stepping scheme, which is randomly taking steps towards the goal of a "run_until". The default ('monthly') makes sure that the model results are consistent whether the users want data at monthly or annual timesteps by forcing the model to land on monthly steps even if only annual updates are required. You may want to change this for optimisation reasons for models that don't require adaptive steps (for example the deltaH method). """ self.is_tidewater = is_tidewater self.is_lake_terminating = is_lake_terminating self.is_marine_terminating = is_tidewater and not is_lake_terminating self.water_level = 0 if water_level is None else water_level # Mass balance self.mb_elev_feedback = mb_elev_feedback.lower() if self.mb_elev_feedback in ['never', 'annual']: self.mb_step = 'annual' elif self.mb_elev_feedback in ['always', 'monthly']: self.mb_step = 'monthly' self.mb_model = mb_model # Defaults if glen_a is None: glen_a = cfg.PARAMS['glen_a'] if fs is None: fs = cfg.PARAMS['fs'] self.glen_a = glen_a self.fs = fs self.glen_n = cfg.PARAMS['glen_n'] self.rho = cfg.PARAMS['ice_density'] if check_for_boundaries is None: check_for_boundaries = cfg.PARAMS[('error_when_glacier_reaches_' 'boundaries')] self.check_for_boundaries = check_for_boundaries # we keep glen_a as input, but for optimisation we stick to "fd" self._fd = 2. / (cfg.PARAMS['glen_n']+2) * self.glen_a # Calving shenanigans self.calving_m3_since_y0 = 0. # total calving since time y0 self.calving_rate_myr = 0. # Time if required_model_steps not in ['annual', 'monthly']: raise InvalidParamsError('required_model_steps needs to be of ' '`annual` or `monthly`.') self.required_model_steps = required_model_steps self.y0 = None self.t = None self.reset_y0(y0) self.fls = None self._tributary_indices = None self.reset_flowlines(flowlines, inplace=inplace, smooth_trib_influx=smooth_trib_influx)
@property def mb_model(self): return self._mb_model @mb_model.setter def mb_model(self, value): # We need a setter because the MB func is stored as an attr too _mb_call = None if value: if self.mb_elev_feedback in ['always', 'monthly']: _mb_call = value.get_monthly_mb elif self.mb_elev_feedback in ['annual', 'never']: _mb_call = value.get_annual_mb else: raise ValueError('mb_elev_feedback not understood') self._mb_model = value self._mb_call = _mb_call self._mb_current_date = None self._mb_current_out = dict() self._mb_current_heights = dict() def reset_y0(self, y0): """Reset the initial model time""" self.y0 = y0 self.t = 0 def reset_flowlines(self, flowlines, inplace=False, smooth_trib_influx=True): """Reset the initial model flowlines""" if not inplace: flowlines = copy.deepcopy(flowlines) try: len(flowlines) except TypeError: flowlines = [flowlines] self.fls = flowlines # list of tributary coordinates and stuff trib_ind = [] for fl in self.fls: # Important also fl.water_level = self.water_level if fl.flows_to is None: trib_ind.append((None, None, None, None)) continue idl = self.fls.index(fl.flows_to) ide = fl.flows_to_indice if not smooth_trib_influx: gk = 1 id0 = ide id1 = ide+1 elif fl.flows_to.nx >= 9: gk = GAUSSIAN_KERNEL[9] id0 = ide-4 id1 = ide+5 elif fl.flows_to.nx >= 7: gk = GAUSSIAN_KERNEL[7] id0 = ide-3 id1 = ide+4 elif fl.flows_to.nx >= 5: gk = GAUSSIAN_KERNEL[5] id0 = ide-2 id1 = ide+3 trib_ind.append((idl, id0, id1, gk)) self._tributary_indices = trib_ind @property def yr(self): return self.y0 + self.t / SEC_IN_YEAR @property def area_m2(self): return np.sum([f.area_m2 for f in self.fls]) @property def volume_m3(self): return np.sum([f.volume_m3 for f in self.fls]) @property def volume_km3(self): return self.volume_m3 * 1e-9 @property def volume_bsl_m3(self): return np.sum([f.volume_bsl_m3 for f in self.fls]) @property def volume_bsl_km3(self): return self.volume_bsl_m3 * 1e-9 @property def volume_bwl_m3(self): return np.sum([f.volume_bwl_m3 for f in self.fls]) @property def volume_bwl_km3(self): return self.volume_bwl_m3 * 1e-9 @property def area_km2(self): return self.area_m2 * 1e-6 @property def length_m(self): return self.fls[-1].length_m def get_mb(self, heights, year=None, fl_id=None, fls=None): """Get the mass balance at the requested height and time. Optimized so that no mb model call is necessary at each step. """ # Do we even have to optimise? if self.mb_elev_feedback == 'always': return self._mb_call(heights, year=year, fl_id=fl_id, fls=fls) # Ok, user asked for it if fl_id is None: raise ValueError('Need fls_id') if self.mb_elev_feedback == 'never': # The very first call we take the heights if fl_id not in self._mb_current_heights: # We need to reset just this tributary self._mb_current_heights[fl_id] = heights # All calls we replace heights = self._mb_current_heights[fl_id] date = utils.floatyear_to_date(year) if self.mb_elev_feedback in ['annual', 'never']: # ignore month changes date = (date[0], date[0]) if self._mb_current_date == date: if fl_id not in self._mb_current_out: # We need to reset just this tributary self._mb_current_out[fl_id] = self._mb_call(heights, year=year, fl_id=fl_id, fls=fls) else: # We need to reset all self._mb_current_date = date self._mb_current_out = dict() self._mb_current_out[fl_id] = self._mb_call(heights, year=year, fl_id=fl_id, fls=fls) return self._mb_current_out[fl_id] def to_geometry_netcdf(self, path): """Creates a netcdf group file storing the state of the model.""" flows_to_id = [] for trib in self._tributary_indices: flows_to_id.append(trib[0] if trib[0] is not None else -1) ds = xr.Dataset() try: ds.attrs['description'] = 'OGGM model output' ds.attrs['oggm_version'] = __version__ ds.attrs['calendar'] = '365-day no leap' ds.attrs['creation_date'] = strftime("%Y-%m-%d %H:%M:%S", gmtime()) ds['flowlines'] = ('flowlines', np.arange(len(flows_to_id))) ds['flows_to_id'] = ('flowlines', flows_to_id) ds.to_netcdf(path) for i, fl in enumerate(self.fls): ds = fl.to_geometry_dataset() ds.to_netcdf(path, 'a', group='fl_{}'.format(i)) finally: ds.close() def check_domain_end(self): """Returns False if the glacier reaches the domains bound.""" return np.isclose(self.fls[-1].thick[-1], 0) def step(self, dt): """Advance the numerical simulation of one single step. Important: the step dt is a maximum boundary that is *not* guaranteed to be met if dt is too large for the underlying numerical implementation. However, ``step(dt)`` should never cross the desired time step, i.e. if dt is small enough to ensure stability, step should match it. The caller will know how much has been actually advanced by looking at the output of ``step()`` or by monitoring ``self.t`` or `self.yr`` Parameters ---------- dt : float the step length in seconds Returns ------- the actual dt chosen by the numerical implementation. Guaranteed to be dt or lower. """ raise NotImplementedError def run_until(self, y1): """Runs the model from the current year up to a given year date y1. This function runs the model for the time difference y1-self.y0 If self.y0 has not been specified at some point, it is 0 and y1 will be the time span in years to run the model for. Parameters ---------- y1 : float Upper time span for how long the model should run """ if self.required_model_steps == 'monthly': # We force timesteps to monthly frequencies for consistent results # among use cases (monthly or yearly output) and also to prevent # "too large" steps in the adaptive scheme. ts = utils.monthly_timeseries(self.yr, y1) # Add the last date to be sure we end on it - implementations # of `step()` and of the loop below should not run twice anyways ts = np.append(ts, y1) else: ts = np.arange(int(self.yr), int(y1+1)) # Loop over the steps we want to meet for y in ts: t = (y - self.y0) * SEC_IN_YEAR # because of CFL, step() doesn't ensure that the end date is met # lets run the steps until we reach our desired date while self.t < t: self.step(t - self.t) # Check for domain bounds if self.check_for_boundaries: if self.fls[-1].thick[-1] > 10: raise RuntimeError('Glacier exceeds domain boundaries, ' 'at year: {}'.format(self.yr)) # Check for nans for fl in self.fls: if np.any(~np.isfinite(fl.thick)): raise FloatingPointError('nan in numerical solution, ' 'at year: {}'.format(self.yr)) def run_until_and_store(self, y1, diag_path=None, fl_diag_path=False, geom_path=False, store_monthly_step=None, stop_criterion=None, fixed_geometry_spinup_yr=None, dynamic_spinup_min_ice_thick=None, ): """Runs the model and returns intermediate steps in xarray datasets. This function repeatedly calls FlowlineModel.run_until for either monthly or yearly time steps up till the upper time boundary y1. Parameters ---------- y1 : int Upper time span for how long the model should run (needs to be a full year) diag_path : str Path and filename where to store the glacier-wide diagnostics dataset (length, area, volume, etc.) as controlled by cfg.PARAMS['store_diagnostic_variables']. The default (None) is to not store the dataset to disk but return the dataset to the user after execution. fl_diag_path : str, None or bool Path and filename where to store the model diagnostics along the flowline(s). geom_path : str, None or bool Path and filename where to store the model geometry dataset. This dataset contains all necessary info to retrieve the full glacier geometry after the run, with a FileModel. This is stored on an annual basis and can be used to restart a run from a past simulation's geometry ("restart file"). The default (False) prevents creating this dataset altogether (for optimisation purposes). Set this to None to not store the dataset to disk but return the dataset to the user after execution. store_monthly_step : Bool If True (False) model diagnostics will be stored monthly (yearly). If unspecified, we follow the update of the MB model, which defaults to yearly (see __init__). stop_criterion : func a function evaluating the model state (and possibly evolution over time), and deciding when to stop the simulation. Its signature should look like: stop, new_state = stop_criterion(model, previous_state) where stop is a bool, and new_state a container (likely: dict) initialized by the function itself on the first call (previous_state can and should be None on the first call). See `zero_glacier_stop_criterion` for an example. fixed_geometry_spinup_yr : int if set to an integer, the model will artificially prolongate all outputs of run_until_and_store to encompass all time stamps starting from the chosen year. The only output affected are the glacier wide diagnostic files - all other outputs are set to constants during "spinup" dynamic_spinup_min_ice_thick : float or None if set to a float, additional variables are saved which are useful in combination with the dynamic spinup. In particular only grid points with a minimum ice thickness are considered for the total area or the total volume. This is useful to smooth out yearly fluctuations when matching to observations. The names of this new variables include the suffix _min_h (e.g. 'area_m2_min_h') Returns ------- geom_ds : xarray.Dataset or None stores the entire glacier geometry. It is useful to visualize the glacier geometry or to restart a new run from a modelled geometry. The glacier state is stored at the beginning of each hydrological year (not in between in order to spare disk space). diag_ds : xarray.Dataset stores a few diagnostic variables such as the volume, area, length and ELA of the glacier. """ if int(y1) != y1: raise InvalidParamsError('run_until_and_store only accepts ' 'integer year dates.') if not self.mb_model.hemisphere: raise InvalidParamsError('run_until_and_store needs a ' 'mass balance model with an unambiguous ' 'hemisphere.') # Do we have a spinup? do_fixed_spinup = fixed_geometry_spinup_yr is not None y0 = fixed_geometry_spinup_yr if do_fixed_spinup else self.yr # Do we need to create a geometry or flowline diagnostics dataset? do_geom = geom_path is None or geom_path do_fl_diag = fl_diag_path is None or fl_diag_path # time yearly_time = np.arange(np.floor(y0), np.floor(y1)+1) if store_monthly_step is None: store_monthly_step = self.mb_step == 'monthly' if store_monthly_step: monthly_time = utils.monthly_timeseries(y0, y1) else: monthly_time = np.arange(np.floor(y0), np.floor(y1)+1) yrs, months = utils.floatyear_to_date(monthly_time) sm = cfg.PARAMS['hydro_month_' + self.mb_model.hemisphere] hyrs, hmonths = utils.calendardate_to_hydrodate(yrs, months, start_month=sm) # init output if geom_path: self.to_geometry_netcdf(geom_path) ny = len(yearly_time) if ny == 1: yrs = [yrs] hyrs = [hyrs] months = [months] hmonths = [hmonths] nm = len(monthly_time) if do_geom or do_fl_diag: sects = [(np.zeros((ny, fl.nx)) * np.nan) for fl in self.fls] widths = [(np.zeros((ny, fl.nx)) * np.nan) for fl in self.fls] buckets = [np.zeros(ny) for _ in self.fls] # Diagnostics dataset diag_ds = xr.Dataset() # Global attributes diag_ds.attrs['description'] = 'OGGM model output' diag_ds.attrs['oggm_version'] = __version__ diag_ds.attrs['calendar'] = '365-day no leap' diag_ds.attrs['creation_date'] = strftime("%Y-%m-%d %H:%M:%S", gmtime()) diag_ds.attrs['water_level'] = self.water_level diag_ds.attrs['glen_a'] = self.glen_a diag_ds.attrs['fs'] = self.fs # Add MB model attributes diag_ds.attrs['mb_model_class'] = self.mb_model.__class__.__name__ for k, v in self.mb_model.__dict__.items(): if np.isscalar(v) and not k.startswith('_'): diag_ds.attrs['mb_model_{}'.format(k)] = v # Coordinates diag_ds.coords['time'] = ('time', monthly_time) diag_ds.coords['calendar_year'] = ('time', yrs) diag_ds.coords['calendar_month'] = ('time', months) diag_ds.coords['hydro_year'] = ('time', hyrs) diag_ds.coords['hydro_month'] = ('time', hmonths) diag_ds['time'].attrs['description'] = 'Floating year' diag_ds['calendar_year'].attrs['description'] = 'Calendar year' diag_ds['calendar_month'].attrs['description'] = 'Calendar month' diag_ds['hydro_year'].attrs['description'] = 'Hydrological year' diag_ds['hydro_month'].attrs['description'] = 'Hydrological month' # Variables and attributes ovars = cfg.PARAMS['store_diagnostic_variables'] if 'volume' in ovars: diag_ds['volume_m3'] = ('time', np.zeros(nm) * np.nan) diag_ds['volume_m3'].attrs['description'] = 'Total glacier volume' diag_ds['volume_m3'].attrs['unit'] = 'm 3' if 'volume_bsl' in ovars: diag_ds['volume_bsl_m3'] = ('time', np.zeros(nm) * np.nan) diag_ds['volume_bsl_m3'].attrs['description'] = ('Glacier volume ' 'below ' 'sea-level') diag_ds['volume_bsl_m3'].attrs['unit'] = 'm 3' if 'volume_bwl' in ovars: diag_ds['volume_bwl_m3'] = ('time', np.zeros(nm) * np.nan) diag_ds['volume_bwl_m3'].attrs['description'] = ('Glacier volume ' 'below ' 'water-level') diag_ds['volume_bwl_m3'].attrs['unit'] = 'm 3' if 'area' in ovars: diag_ds['area_m2'] = ('time', np.zeros(nm) * np.nan) diag_ds['area_m2'].attrs['description'] = 'Total glacier area' diag_ds['area_m2'].attrs['unit'] = 'm 2' if dynamic_spinup_min_ice_thick is None: dynamic_spinup_min_ice_thick = cfg.PARAMS['dynamic_spinup_min_ice_thick'] if 'area_min_h' in ovars: # filled with a value if dynamic_spinup_min_ice_thick is not None diag_ds['area_m2_min_h'] = ('time', np.zeros(nm) * np.nan) diag_ds['area_m2_min_h'].attrs['description'] = \ f'Total glacier area of gridpoints with a minimum ice' \ f'thickness of {dynamic_spinup_min_ice_thick} m' diag_ds['area_m2_min_h'].attrs['unit'] = 'm 2' if 'length' in ovars: diag_ds['length_m'] = ('time', np.zeros(nm) * np.nan) diag_ds['length_m'].attrs['description'] = 'Glacier length' diag_ds['length_m'].attrs['unit'] = 'm' if 'calving' in ovars: diag_ds['calving_m3'] = ('time', np.zeros(nm) * np.nan) diag_ds['calving_m3'].attrs['description'] = ('Total accumulated ' 'calving flux') diag_ds['calving_m3'].attrs['unit'] = 'm 3' if 'calving_rate' in ovars: diag_ds['calving_rate_myr'] = ('time', np.zeros(nm) * np.nan) diag_ds['calving_rate_myr'].attrs['description'] = 'Calving rate' diag_ds['calving_rate_myr'].attrs['unit'] = 'm yr-1' for gi in range(10): vn = f'terminus_thick_{gi}' if vn in ovars: diag_ds[vn] = ('time', np.zeros(nm) * np.nan) diag_ds[vn].attrs['description'] = ('Thickness of grid point ' f'{gi} from terminus.') diag_ds[vn].attrs['unit'] = 'm' if do_fixed_spinup: is_spinup_time = monthly_time < self.yr diag_ds['is_fixed_geometry_spinup'] = ('time', is_spinup_time) desc = 'Part of the series which are spinup' diag_ds['is_fixed_geometry_spinup'].attrs['description'] = desc diag_ds['is_fixed_geometry_spinup'].attrs['unit'] = '-' fl_diag_dss = None if do_fl_diag: # Time invariant datasets fl_diag_dss = [fl.to_diagnostics_dataset() for fl in self.fls] # Global attributes for ds in fl_diag_dss: ds.attrs['description'] = 'OGGM model output' ds.attrs['oggm_version'] = __version__ ds.attrs['calendar'] = '365-day no leap' ds.attrs['creation_date'] = strftime("%Y-%m-%d %H:%M:%S", gmtime()) ds.attrs['water_level'] = self.water_level ds.attrs['glen_a'] = self.glen_a ds.attrs['fs'] = self.fs # Add MB model attributes ds.attrs['mb_model_class'] = self.mb_model.__class__.__name__ for k, v in self.mb_model.__dict__.items(): if np.isscalar(v) and not k.startswith('_'): if type(v) is bool: v = str(v) ds.attrs['mb_model_{}'.format(k)] = v # Coordinates ds.coords['time'] = yearly_time ds['time'].attrs['description'] = 'Floating hydrological year' # Variables and attributes ovars_fl = cfg.PARAMS['store_fl_diagnostic_variables'] if 'volume' not in ovars_fl or 'area' not in ovars_fl: raise InvalidParamsError('Flowline diagnostics need at least ' 'volume and area as output.') for ds, sect, width, bucket in zip(fl_diag_dss, sects, widths, buckets): if 'volume' in ovars_fl: ds['volume_m3'] = (('time', 'dis_along_flowline'), sect) ds['volume_m3'].attrs['description'] = 'Section volume' ds['volume_m3'].attrs['unit'] = 'm 3' if 'volume_bsl' in ovars_fl: ds['volume_bsl_m3'] = (('time', 'dis_along_flowline'), sect * 0) ds['volume_bsl_m3'].attrs['description'] = 'Section volume below sea level' ds['volume_bsl_m3'].attrs['unit'] = 'm 3' if 'volume_bwl' in ovars_fl: ds['volume_bwl_m3'] = (('time', 'dis_along_flowline'), sect * 0) ds['volume_bwl_m3'].attrs['description'] = 'Section volume below water level' ds['volume_bwl_m3'].attrs['unit'] = 'm 3' if 'area' in ovars_fl: ds['area_m2'] = (('time', 'dis_along_flowline'), width) ds['area_m2'].attrs['description'] = 'Section area' ds['area_m2'].attrs['unit'] = 'm 2' if 'thickness' in ovars_fl: ds['thickness_m'] = (('time', 'dis_along_flowline'), width * np.nan) ds['thickness_m'].attrs['description'] = 'Section thickness' ds['thickness_m'].attrs['unit'] = 'm' if 'ice_velocity' in ovars_fl: if not (hasattr(self, '_surf_vel_fac') or hasattr(self, 'u_stag')): raise InvalidParamsError('This flowline model does not seem ' 'to be able to provide surface ' 'velocities.') ds['ice_velocity_myr'] = (('time', 'dis_along_flowline'), width * np.nan) ds['ice_velocity_myr'].attrs['description'] = 'Ice velocity at the surface' ds['ice_velocity_myr'].attrs['unit'] = 'm yr-1' if 'calving_bucket' in ovars_fl: ds['calving_bucket_m3'] = (('time',), bucket) desc = 'Flowline calving bucket (volume not yet calved)' ds['calving_bucket_m3'].attrs['description'] = desc ds['calving_bucket_m3'].attrs['unit'] = 'm 3' if do_fixed_spinup: ds['is_fixed_geometry_spinup'] = ('time', is_spinup_time) desc = 'Part of the series which are spinup' ds['is_fixed_geometry_spinup'].attrs['description'] = desc ds['is_fixed_geometry_spinup'].attrs['unit'] = '-' if 'flux_divergence' in ovars_fl: # We need dhdt and climatic_mb to calculate divergence if 'dhdt' not in ovars_fl: ovars_fl.append('dhdt') if 'climatic_mb' not in ovars_fl: ovars_fl.append('climatic_mb') ds['flux_divergence_myr'] = (('time', 'dis_along_flowline'), width * np.nan) desc = 'Ice-flux divergence' ds['flux_divergence_myr'].attrs['description'] = desc ds['flux_divergence_myr'].attrs['unit'] = 'm yr-1' if 'climatic_mb' in ovars_fl: # We need dhdt to define where to calculate climatic_mb if 'dhdt' not in ovars_fl: ovars_fl.append('dhdt') ds['climatic_mb_myr'] = (('time', 'dis_along_flowline'), width * np.nan) desc = 'Climatic mass balance forcing' ds['climatic_mb_myr'].attrs['description'] = desc ds['climatic_mb_myr'].attrs['unit'] = 'm yr-1' # needed for the calculation of mb at start of period surface_h_previous = {} for fl_id, fl in enumerate(self.fls): surface_h_previous[fl_id] = fl.surface_h if 'dhdt' in ovars_fl: ds['dhdt_myr'] = (('time', 'dis_along_flowline'), width * np.nan) desc = 'Thickness change' ds['dhdt_myr'].attrs['description'] = desc ds['dhdt_myr'].attrs['unit'] = 'm yr-1' # needed for the calculation of dhdt thickness_previous_dhdt = {} for fl_id, fl in enumerate(self.fls): thickness_previous_dhdt[fl_id] = fl.thick # First deal with spinup (we compute volume change only) if do_fixed_spinup: spinup_vol = monthly_time * 0 for fl_id, fl in enumerate(self.fls): h = fl.surface_h a = fl.widths_m * fl.dx_meter a[fl.section <= 0] = 0 for j, yr in enumerate(monthly_time[is_spinup_time]): smb = self.get_mb(h, year=yr, fl_id=fl_id, fls=self.fls) spinup_vol[j] -= np.sum(smb * a) # per second and minus because backwards # per unit time dt = (monthly_time[1:] - monthly_time[:-1]) * cfg.SEC_IN_YEAR spinup_vol[:-1] = spinup_vol[:-1] * dt spinup_vol = np.cumsum(spinup_vol[::-1])[::-1] # Run j = 0 prev_state = None # for the stopping criterion for i, (yr, mo) in enumerate(zip(monthly_time, months)): if yr > self.yr: # Here we model run - otherwise (for spinup) we # constantly store the same data self.run_until(yr) # Glacier geometry if (do_geom or do_fl_diag) and mo == 1: for s, w, b, fl in zip(sects, widths, buckets, self.fls): s[j, :] = fl.section w[j, :] = fl.widths_m if self.is_tidewater: try: b[j] = fl.calving_bucket_m3 except AttributeError: pass # Flowline diagnostics if do_fl_diag: for fl_id, (ds, fl) in enumerate(zip(fl_diag_dss, self.fls)): # area and volume are already being taken care of above if 'thickness' in ovars_fl: ds['thickness_m'].data[j, :] = fl.thick if 'volume_bsl' in ovars_fl: ds['volume_bsl_m3'].data[j, :] = fl.volume_bsl_m3 if 'volume_bwl' in ovars_fl: ds['volume_bwl_m3'].data[j, :] = fl.volume_bwl_m3 if 'ice_velocity' in ovars_fl and (yr > self.y0): # Velocity can only be computed with dynamics var = self.u_stag[fl_id] val = (var[1:fl.nx + 1] + var[:fl.nx]) / 2 * self._surf_vel_fac ds['ice_velocity_myr'].data[j, :] = val * cfg.SEC_IN_YEAR if 'dhdt' in ovars_fl and (yr > self.y0): # dhdt can only be computed after one year val = fl.thick - thickness_previous_dhdt[fl_id] ds['dhdt_myr'].data[j, :] = val thickness_previous_dhdt[fl_id] = fl.thick if 'climatic_mb' in ovars_fl and (yr > self.y0): # yr - 1 to use the mb which lead to the current # state, also using previous surface height val = self.get_mb(surface_h_previous[fl_id], self.yr - 1, fl_id=fl_id) # only save climatic mb where dhdt is non zero, # isclose for avoiding numeric represention artefacts dhdt_zero = np.isclose(ds['dhdt_myr'].data[j, :], 0.) ds['climatic_mb_myr'].data[j, :] = np.where( dhdt_zero, 0., val * cfg.SEC_IN_YEAR) surface_h_previous[fl_id] = fl.surface_h if 'flux_divergence' in ovars_fl and (yr > self.y0): # calculated after the formula dhdt = mb + flux_div val = ds['dhdt_myr'].data[j, :] - ds['climatic_mb_myr'].data[j, :] # special treatment for retreating: If the glacier # terminus is getting ice free it means the # climatic mass balance is more negative than the # available ice to melt. In this case we can not # calculate the flux divergence with this method # exactly, we just can say it was smaller to # compensate the very negative climatic mb. # To avoid large spikes at the terminus in the # calculated flux divergence we smooth this values # with an (arbitrary) factor of 0.1. has_become_ice_free = np.logical_and( np.isclose(fl.thick, 0.), ds['dhdt_myr'].data[j, :] < 0. ) fac = np.where(has_become_ice_free, 0.1, 1.) ds['flux_divergence_myr'].data[j, :] = val * fac # j is the yearly index in case we have monthly output # we have to count it ourselves j += 1 # Diagnostics if 'volume' in ovars: diag_ds['volume_m3'].data[i] = self.volume_m3 if 'area' in ovars: diag_ds['area_m2'].data[i] = self.area_m2 if 'length' in ovars: diag_ds['length_m'].data[i] = self.length_m if 'calving' in ovars: diag_ds['calving_m3'].data[i] = self.calving_m3_since_y0 if 'calving_rate' in ovars: diag_ds['calving_rate_myr'].data[i] = self.calving_rate_myr if 'volume_bsl' in ovars: diag_ds['volume_bsl_m3'].data[i] = self.volume_bsl_m3 if 'volume_bwl' in ovars: diag_ds['volume_bwl_m3'].data[i] = self.volume_bwl_m3 if 'area_min_h' in ovars: diag_ds['area_m2_min_h'].data[i] = np.sum([np.sum( fl.bin_area_m2[fl.thick > dynamic_spinup_min_ice_thick]) for fl in self.fls]) # Terminus thick is a bit more logic ti = None for gi in range(10): vn = f'terminus_thick_{gi}' if vn in ovars: if ti is None: ti = self.fls[-1].terminus_index diag_ds[vn].data[i] = self.fls[-1].thick[ti - gi] # Decide if we continue if stop_criterion is not None: stop, prev_state = stop_criterion(self, prev_state) if stop: break # to datasets geom_ds = None if do_geom: geom_ds = [] for (s, w, b) in zip(sects, widths, buckets): ds = xr.Dataset() ds.attrs['description'] = 'OGGM model output' ds.attrs['oggm_version'] = __version__ ds.attrs['calendar'] = '365-day no leap' ds.attrs['creation_date'] = strftime("%Y-%m-%d %H:%M:%S", gmtime()) ds.attrs['water_level'] = self.water_level ds.attrs['glen_a'] = self.glen_a ds.attrs['fs'] = self.fs # Add MB model attributes ds.attrs['mb_model_class'] = self.mb_model.__class__.__name__ for k, v in self.mb_model.__dict__.items(): if np.isscalar(v) and not k.startswith('_'): ds.attrs['mb_model_{}'.format(k)] = v ds.coords['time'] = yearly_time ds['time'].attrs['description'] = 'Floating hydrological year' varcoords = OrderedDict(time=('time', yearly_time), year=('time', yearly_time)) ds['ts_section'] = xr.DataArray(s, dims=('time', 'x'), coords=varcoords) ds['ts_width_m'] = xr.DataArray(w, dims=('time', 'x'), coords=varcoords) ds['ts_calving_bucket_m3'] = xr.DataArray(b, dims=('time', ), coords=varcoords) if stop_criterion is not None: # Remove probable nans ds = ds.dropna('time', subset=['ts_section']) geom_ds.append(ds) # Add the spinup volume to the diag if do_fixed_spinup: # If there is calving we need to trick as well if 'calving_m3' in diag_ds and np.any(diag_ds['calving_m3'] > 0): raise NotImplementedError('Calving and fixed_geometry_spinup_yr ' 'not implemented yet.') diag_ds['volume_m3'].data[:] += spinup_vol if stop_criterion is not None: # Remove probable nans diag_ds = diag_ds.dropna('time', subset=['volume_m3']) # write output? if do_fl_diag: # Unit conversions for these for i, ds in enumerate(fl_diag_dss): dx = ds.attrs['map_dx'] * ds.attrs['dx'] # No inplace because the other dataset uses them # These variables are always there (see above) ds['volume_m3'] = ds['volume_m3'] * dx ds['area_m2'] = ds['area_m2'].where(ds['volume_m3'] > 0, 0) * dx if stop_criterion is not None: # Remove probable nans fl_diag_dss[i] = ds.dropna('time', subset=['volume_m3']) # Write out? if fl_diag_path not in [True, None]: encode = {} for v in fl_diag_dss[0]: encode[v] = {'zlib': True, 'complevel': 5} # Welcome ds ds = xr.Dataset() ds.attrs['description'] = ('OGGM model output on flowlines. ' 'Check groups for data.') ds.attrs['oggm_version'] = __version__ # This is useful to interpret the dataset afterwards flows_to_id = [] for trib in self._tributary_indices: flows_to_id.append(trib[0] if trib[0] is not None else -1) ds['flowlines'] = ('flowlines', np.arange(len(flows_to_id))) ds['flows_to_id'] = ('flowlines', flows_to_id) ds.to_netcdf(fl_diag_path, 'w') for i, ds in enumerate(fl_diag_dss): ds.to_netcdf(fl_diag_path, 'a', group='fl_{}'.format(i), encoding=encode) if do_geom and geom_path not in [True, None]: encode = {'ts_section': {'zlib': True, 'complevel': 5}, 'ts_width_m': {'zlib': True, 'complevel': 5}, } for i, ds in enumerate(geom_ds): ds.to_netcdf(geom_path, 'a', group='fl_{}'.format(i), encoding=encode) # Add calving to geom file because the FileModel can't infer it if 'calving_m3' in diag_ds: diag_ds[['calving_m3']].to_netcdf(geom_path, 'a') if diag_path not in [True, None]: diag_ds.to_netcdf(diag_path) # Decide on what to give back out = [diag_ds] if fl_diag_dss is not None: out.append(fl_diag_dss) if geom_ds is not None: out.append(geom_ds) if len(out) == 1: out = out[0] else: out = tuple(out) return out def run_until_equilibrium(self, rate=0.001, ystep=5, max_ite=200): """ Runs the model until an equilibrium state is reached. Be careful: This only works for CONSTANT (not time-dependent) mass balance models. Otherwise the returned state will not be in equilibrium! Don't try to calculate an equilibrium state with a RandomMassBalance model! """ ite = 0 was_close_zero = 0 t_rate = 1 while (t_rate > rate) and (ite <= max_ite) and (was_close_zero < 5): ite += 1 v_bef = self.volume_m3 self.run_until(self.yr + ystep) v_af = self.volume_m3 if np.isclose(v_bef, 0., atol=1): t_rate = 1 was_close_zero += 1 else: t_rate = np.abs(v_af - v_bef) / v_bef if ite > max_ite: raise RuntimeError('Did not find equilibrium.')
def flux_gate_with_build_up(year, flux_value=None, flux_gate_yr=None): """Default scalar flux gate with build up period""" fac = 1 - (flux_gate_yr - year) / flux_gate_yr return flux_value * utils.clip_scalar(fac, 0, 1) def k_calving_law(model, flowline, last_above_wl): """Compute calving from the model state using the k-calving law. Currently this still assumes that the model has an attribute called "calving_k", which might be changed in the future. Parameters ---------- model : oggm.core.flowline.FlowlineModel the model instance calling the function flowline : oggm.core.flowline.Flowline the instance of the flowline object on which the calving law is called last_above_wl : int the index of the last pixel above water (in case you need to know where it is). """ h = flowline.thick[last_above_wl] d = h - (flowline.surface_h[last_above_wl] - model.water_level) k = model.calving_k q_calving = k * d * h * flowline.widths_m[last_above_wl] return q_calving class FluxBasedModel(FlowlineModel): """The flowline model used by OGGM in production. It solves for the SIA along the flowline(s) using a staggered grid. It computes the *ice flux* between grid points and transports the mass accordingly (also between flowlines). This model is numerically less stable than fancier schemes, but it is fast and works with multiple flowlines of any bed shape (rectangular, parabolic, trapeze, and any combination of them). We test that it conserves mass in most cases, but not on very stiff cliffs. """ def __init__(self, flowlines, mb_model=None, y0=0., glen_a=None, fs=0., inplace=False, fixed_dt=None, cfl_number=None, min_dt=None, flux_gate_thickness=None, flux_gate=None, flux_gate_build_up=100, do_kcalving=None, calving_k=None, calving_law=k_calving_law, calving_use_limiter=None, calving_limiter_frac=None, water_level=None, **kwargs): """Instantiate the model. Parameters ---------- flowlines : list the glacier flowlines mb_model : MassBalanceModel the mass balance model y0 : int initial year of the simulation glen_a : float Glen's creep parameter fs : float Oerlemans sliding parameter inplace : bool whether or not to make a copy of the flowline objects for the run setting to True implies that your objects will be modified at run time by the model (can help to spare memory) fixed_dt : float set to a value (in seconds) to prevent adaptive time-stepping. cfl_number : float Defaults to cfg.PARAMS['cfl_number']. For adaptive time stepping (the default), dt is chosen from the CFL criterion (dt = cfl_number * dx / max_u). To choose the "best" CFL number we would need a stability analysis - we used an empirical analysis (see blog post) and settled on 0.02 for the default cfg.PARAMS['cfl_number']. min_dt : float Defaults to cfg.PARAMS['cfl_min_dt']. At high velocities, time steps can become very small and your model might run very slowly. In production, it might be useful to set a limit below which the model will just error. is_tidewater: bool, default: False is this a tidewater glacier? is_lake_terminating: bool, default: False is this a lake terminating glacier? mb_elev_feedback : str, default: 'annual' 'never', 'always', 'annual', or 'monthly': how often the mass balance should be recomputed from the mass balance model. 'Never' is equivalent to 'annual' but without elevation feedback at all (the heights are taken from the first call). check_for_boundaries: bool, default: True raise an error when the glacier grows bigger than the domain boundaries flux_gate_thickness : float or array flux of ice from the left domain boundary (and tributaries). Units of m of ice thickness. Note that unrealistic values won't be met by the model, so this is really just a rough guidance. It's better to use `flux_gate` instead. flux_gate : float or function or array of floats or array of functions flux of ice from the left domain boundary (and tributaries) (unit: m3 of ice per second). If set to a high value, consider changing the flux_gate_buildup time. You can also provide a function (or an array of functions) returning the flux (unit: m3 of ice per second) as a function of time. This is overridden by `flux_gate_thickness` if provided. flux_gate_buildup : int number of years used to build up the flux gate to full value do_kcalving : bool switch on the k-calving parameterisation. Ignored if not a tidewater glacier. Use the option from PARAMS per default calving_law : func option to use another calving law. This is a temporary workaround to test other calving laws, and the system might be improved in future OGGM versions. calving_k : float the calving proportionality constant (units: yr-1). Use the one from PARAMS per default calving_use_limiter : bool whether to switch on the calving limiter on the parameterisation makes the calving fronts thicker but the model is more stable calving_limiter_frac : float limit the front slope to a fraction of the calving front. "3" means 1/3. Setting it to 0 limits the slope to sea-level. water_level : float the water level. It should be zero m a.s.l, but: - sometimes the frontal elevation is unrealistically high (or low). - lake terminating glaciers - other uncertainties The default is 0. For lake terminating glaciers, it is inferred from PARAMS['free_board_lake_terminating']. The best way to set the water level for real glaciers is to use the same as used for the inversion (this is what `flowline_model_run` does for you) """ super(FluxBasedModel, self).__init__(flowlines, mb_model=mb_model, y0=y0, glen_a=glen_a, fs=fs, inplace=inplace, water_level=water_level, **kwargs) self.fixed_dt = fixed_dt if min_dt is None: min_dt = cfg.PARAMS['cfl_min_dt'] if cfl_number is None: cfl_number = cfg.PARAMS['cfl_number'] self.min_dt = min_dt self.cfl_number = cfl_number # Calving params if do_kcalving is None: do_kcalving = cfg.PARAMS['use_kcalving_for_run'] self.calving_law = calving_law self.do_calving = do_kcalving and self.is_tidewater if calving_k is None: calving_k = cfg.PARAMS['calving_k'] self.calving_k = calving_k / cfg.SEC_IN_YEAR if calving_use_limiter is None: calving_use_limiter = cfg.PARAMS['calving_use_limiter'] self.calving_use_limiter = calving_use_limiter if calving_limiter_frac is None: calving_limiter_frac = cfg.PARAMS['calving_limiter_frac'] if calving_limiter_frac > 0: raise NotImplementedError('calving limiter other than 0 not ' 'implemented yet') self.calving_limiter_frac = calving_limiter_frac # Flux gate self.flux_gate = utils.tolist(flux_gate, length=len(self.fls)) self.flux_gate_m3_since_y0 = 0. if flux_gate_thickness is not None: # Compute the theoretical ice flux from the slope at the top flux_gate_thickness = utils.tolist(flux_gate_thickness, length=len(self.fls)) self.flux_gate = [] for fl, fgt in zip(self.fls, flux_gate_thickness): # We set the thickness to the desired value so that # the widths work ok fl = copy.deepcopy(fl) fl.thick = fl.thick * 0 + fgt slope = (fl.surface_h[0] - fl.surface_h[1]) / fl.dx_meter if slope == 0: raise ValueError('I need a slope to compute the flux') flux = find_sia_flux_from_thickness(slope, fl.widths_m[0], fgt, shape=fl.shape_str[0], glen_a=self.glen_a, fs=self.fs) self.flux_gate.append(flux) # convert the floats to function calls for i, fg in enumerate(self.flux_gate): if fg is None: continue try: # Do we have a function? If yes all good fg(self.yr) except TypeError: # If not, make one self.flux_gate[i] = partial(flux_gate_with_build_up, flux_value=fg, flux_gate_yr=(flux_gate_build_up + self.y0)) # Special output self._surf_vel_fac = (self.glen_n + 2) / (self.glen_n + 1) # Optim self.slope_stag = [] self.thick_stag = [] self.section_stag = [] self.u_stag = [] self.shapefac_stag = [] self.flux_stag = [] self.trib_flux = [] for fl, trib in zip(self.fls, self._tributary_indices): nx = fl.nx # This is not staggered self.trib_flux.append(np.zeros(nx)) # We add an additional fake grid point at the end of tributaries if trib[0] is not None: nx = fl.nx + 1 # +1 is for the staggered grid self.slope_stag.append(np.zeros(nx+1)) self.thick_stag.append(np.zeros(nx+1)) self.section_stag.append(np.zeros(nx+1)) self.u_stag.append(np.zeros(nx+1)) self.shapefac_stag.append(np.ones(nx+1)) # beware the ones! self.flux_stag.append(np.zeros(nx+1)) def step(self, dt): """Advance one step.""" # Just a check to avoid useless computations if dt <= 0: raise InvalidParamsError('dt needs to be strictly positive') # Simple container mbs = [] # Loop over tributaries to determine the flux rate for fl_id, fl in enumerate(self.fls): # This is possibly less efficient than zip() but much clearer trib = self._tributary_indices[fl_id] slope_stag = self.slope_stag[fl_id] thick_stag = self.thick_stag[fl_id] section_stag = self.section_stag[fl_id] sf_stag = self.shapefac_stag[fl_id] flux_stag = self.flux_stag[fl_id] trib_flux = self.trib_flux[fl_id] u_stag = self.u_stag[fl_id] flux_gate = self.flux_gate[fl_id] # Flowline state surface_h = fl.surface_h thick = fl.thick section = fl.section dx = fl.dx_meter # If it is a tributary, we use the branch it flows into to compute # the slope of the last grid point is_trib = trib[0] is not None if is_trib: fl_to = self.fls[trib[0]] ide = fl.flows_to_indice surface_h = np.append(surface_h, fl_to.surface_h[ide]) thick = np.append(thick, thick[-1]) section = np.append(section, section[-1]) elif self.do_calving and self.calving_use_limiter: # We lower the max possible ice deformation # by clipping the surface slope here. It is completely # arbitrary but reduces ice deformation at the calving front. # I think that in essence, it is also partly # a "calving process", because this ice deformation must # be less at the calving front. The result is that calving # front "free boards" are quite high. # Note that 0 is arbitrary, it could be any value below SL surface_h = utils.clip_min(surface_h, self.water_level) # Staggered gradient slope_stag[0] = 0 slope_stag[1:-1] = (surface_h[0:-1] - surface_h[1:]) / dx slope_stag[-1] = slope_stag[-2] # Staggered thick thick_stag[1:-1] = (thick[0:-1] + thick[1:]) / 2. thick_stag[[0, -1]] = thick[[0, -1]] # Staggered velocity (Deformation + Sliding) # _fd = 2/(N+2) * self.glen_a N = self.glen_n rhogh = (self.rho*G*slope_stag)**N u_stag[:] = (thick_stag**(N+1)) * self._fd * rhogh * sf_stag**N + \ (thick_stag**(N-1)) * self.fs * rhogh # Staggered section section_stag[1:-1] = (section[0:-1] + section[1:]) / 2. section_stag[[0, -1]] = section[[0, -1]] # Staggered flux rate flux_stag[:] = u_stag * section_stag # Add boundary condition if flux_gate is not None: flux_stag[0] = flux_gate(self.yr) # CFL condition if not self.fixed_dt: maxu = np.max(np.abs(u_stag)) if maxu > cfg.FLOAT_EPS: cfl_dt = self.cfl_number * dx / maxu else: cfl_dt = dt # Update dt only if necessary if cfl_dt < dt: dt = cfl_dt if cfl_dt < self.min_dt: raise RuntimeError( 'CFL error: required time step smaller ' 'than the minimum allowed: ' '{:.1f}s vs {:.1f}s. Happening at ' 'simulation year {:.1f}, fl_id {}, ' 'bin_id {} and max_u {:.3f} m yr-1.' ''.format(cfl_dt, self.min_dt, self.yr, fl_id, np.argmax(np.abs(u_stag)), maxu * cfg.SEC_IN_YEAR)) # Since we are in this loop, reset the tributary flux trib_flux[:] = 0 # We compute MB in this loop, before mass-redistribution occurs, # so that MB models which rely on glacier geometry to decide things # (like PyGEM) can do wo with a clean glacier state mbs.append(self.get_mb(fl.surface_h, self.yr, fl_id=fl_id, fls=self.fls)) # Time step if self.fixed_dt: # change only if step dt is larger than the chosen dt if self.fixed_dt < dt: dt = self.fixed_dt # A second loop for the mass exchange for fl_id, fl in enumerate(self.fls): flx_stag = self.flux_stag[fl_id] trib_flux = self.trib_flux[fl_id] tr = self._tributary_indices[fl_id] dx = fl.dx_meter is_trib = tr[0] is not None # For these we had an additional grid point if is_trib: flx_stag = flx_stag[:-1] # Mass balance widths = fl.widths_m mb = mbs[fl_id] # Allow parabolic beds to grow mb = dt * mb * np.where((mb > 0.) & (widths == 0), 10., widths) # Update section with ice flow and mass balance new_section = (fl.section + (flx_stag[0:-1] - flx_stag[1:])*dt/dx + trib_flux*dt/dx + mb) # Keep positive values only and store fl.section = utils.clip_min(new_section, 0) # If we use a flux-gate, store the total volume that came in self.flux_gate_m3_since_y0 += flx_stag[0] * dt # Add the last flux to the tributary # this works because the lines are sorted in order if is_trib: # tr tuple: line_index, start, stop, gaussian_kernel self.trib_flux[tr[0]][tr[1]:tr[2]] += \ utils.clip_min(flx_stag[-1], 0) * tr[3] # --- The rest is for calving only --- self.calving_rate_myr = 0. # If tributary, do calving only if we are not transferring mass if is_trib and flx_stag[-1] > 0: continue # No need to do calving in these cases either if not self.do_calving or not fl.has_ice(): continue # We do calving only if the last glacier bed pixel is below water # (this is to avoid calving elsewhere than at the front) if fl.bed_h[fl.thick > 0][-1] > self.water_level: continue # We do calving only if there is some ice above wl last_above_wl = np.nonzero((fl.surface_h > self.water_level) & (fl.thick > 0))[0][-1] if fl.bed_h[last_above_wl] > self.water_level: continue # OK, we're really calving section = fl.section # Calving law q_calving = self.calving_law(self, fl, last_above_wl) # Add to the bucket and the diagnostics fl.calving_bucket_m3 += q_calving * dt self.calving_m3_since_y0 += q_calving * dt self.calving_rate_myr = (q_calving / section[last_above_wl] * cfg.SEC_IN_YEAR) # See if we have ice below sea-water to clean out first below_sl = (fl.surface_h < self.water_level) & (fl.thick > 0) to_remove = np.sum(section[below_sl]) * fl.dx_meter if 0 < to_remove < fl.calving_bucket_m3: # This is easy, we remove everything section[below_sl] = 0 fl.calving_bucket_m3 -= to_remove elif to_remove > 0: # We can only remove part of if section[below_sl] = 0 section[last_above_wl+1] = ((to_remove - fl.calving_bucket_m3) / fl.dx_meter) fl.calving_bucket_m3 = 0 # The rest of the bucket might calve an entire grid point (or more?) vol_last = section[last_above_wl] * fl.dx_meter while fl.calving_bucket_m3 > vol_last: fl.calving_bucket_m3 -= vol_last section[last_above_wl] = 0 # OK check if we need to continue (unlikely) last_above_wl -= 1 vol_last = section[last_above_wl] * fl.dx_meter # We update the glacier with our changes fl.section = section # Next step self.t += dt return dt def get_diagnostics(self, fl_id=-1): """Obtain model diagnostics in a pandas DataFrame. Velocities in OGGM's FluxBasedModel are sometimes subject to numerical instabilities. To deal with the issue, you can either set a smaller ``PARAMS['cfl_number']`` (e.g. 0.01) or smooth the output a bit, e.g. with ``df.rolling(5, center=True, min_periods=1).mean()`` Parameters ---------- fl_id : int the index of the flowline of interest, from 0 to n_flowline-1. Default is to take the last (main) one Returns ------- a pandas DataFrame, which index is distance along flowline (m). Units: - surface_h, bed_h, ice_tick, section_width: m - section_area: m2 - slope: - - ice_flux, tributary_flux: m3 of *ice* per second - ice_velocity: m per second (depth-section integrated) - surface_ice_velocity: m per second (corrected for surface - simplified) """ import pandas as pd fl = self.fls[fl_id] nx = fl.nx df = pd.DataFrame(index=fl.dx_meter * np.arange(nx)) df.index.name = 'distance_along_flowline' df['surface_h'] = fl.surface_h df['bed_h'] = fl.bed_h df['ice_thick'] = fl.thick df['section_width'] = fl.widths_m df['section_area'] = fl.section # Staggered var = self.slope_stag[fl_id] df['slope'] = (var[1:nx+1] + var[:nx])/2 var = self.flux_stag[fl_id] df['ice_flux'] = (var[1:nx+1] + var[:nx])/2 var = self.u_stag[fl_id] df['ice_velocity'] = (var[1:nx+1] + var[:nx])/2 df['surface_ice_velocity'] = df['ice_velocity'] * self._surf_vel_fac var = self.shapefac_stag[fl_id] df['shape_fac'] = (var[1:nx+1] + var[:nx])/2 # Not Staggered df['tributary_flux'] = self.trib_flux[fl_id] return df class MassConservationChecker(FluxBasedModel): """This checks if the FluxBasedModel is conserving mass.""" def __init__(self, flowlines, **kwargs): """ Instantiate. Parameters ---------- """ super(MassConservationChecker, self).__init__(flowlines, **kwargs) self.total_mass = 0. def step(self, dt): mbs = [] sections = [] for fl in self.fls: # Mass balance widths = fl.widths_m mb = self.get_mb(fl.surface_h, self.yr, fl_id=id(fl)) mbs.append(mb * widths) sections.append(np.copy(fl.section)) dx = fl.dx_meter dt = super(MassConservationChecker, self).step(dt) for mb, sec in zip(mbs, sections): mb = dt * mb # there can't be more negative mb than there is section # this isn't an exact solution unfortunately # TODO: exact solution for mass conservation mb = utils.clip_min(mb, -sec) self.total_mass += np.sum(mb * dx) class KarthausModel(FlowlineModel): """The actual model""" def __init__(self, flowlines, mb_model=None, y0=0., glen_a=None, fs=0., fixed_dt=None, min_dt=SEC_IN_DAY, max_dt=31*SEC_IN_DAY, inplace=False, **kwargs): """ Instantiate. Parameters ---------- """ if len(flowlines) > 1: raise ValueError('Karthaus model does not work with tributaries.') super(KarthausModel, self).__init__(flowlines, mb_model=mb_model, y0=y0, glen_a=glen_a, fs=fs, inplace=inplace, **kwargs) self.dt_warning = False, if fixed_dt is not None: min_dt = fixed_dt max_dt = fixed_dt self.min_dt = min_dt self.max_dt = max_dt def step(self, dt): """Advance one step.""" # Just a check to avoid useless computations if dt <= 0: raise InvalidParamsError('dt needs to be strictly positive') # This is to guarantee a precise arrival on a specific date if asked min_dt = dt if dt < self.min_dt else self.min_dt dt = utils.clip_scalar(dt, min_dt, self.max_dt) fl = self.fls[0] dx = fl.dx_meter width = fl.widths_m thick = fl.thick MassBalance = self.get_mb(fl.surface_h, self.yr, fl_id=id(fl)) SurfaceHeight = fl.surface_h # Surface gradient SurfaceGradient = np.zeros(fl.nx) SurfaceGradient[1:fl.nx-1] = (SurfaceHeight[2:] - SurfaceHeight[:fl.nx-2])/(2*dx) SurfaceGradient[-1] = 0 SurfaceGradient[0] = 0 # Diffusivity N = self.glen_n Diffusivity = width * (self.rho*G)**3 * thick**3 * SurfaceGradient**2 Diffusivity *= 2/(N+2) * self.glen_a * thick**2 + self.fs # on stagger DiffusivityStaggered = np.zeros(fl.nx) SurfaceGradientStaggered = np.zeros(fl.nx) DiffusivityStaggered[1:] = (Diffusivity[:fl.nx-1] + Diffusivity[1:])/2. DiffusivityStaggered[0] = Diffusivity[0] SurfaceGradientStaggered[1:] = (SurfaceHeight[1:] - SurfaceHeight[:fl.nx-1])/dx SurfaceGradientStaggered[0] = 0 GradxDiff = SurfaceGradientStaggered * DiffusivityStaggered # Yo NewIceThickness = np.zeros(fl.nx) NewIceThickness[:fl.nx-1] = (thick[:fl.nx-1] + (dt/width[0:fl.nx-1]) * (GradxDiff[1:]-GradxDiff[:fl.nx-1])/dx + dt * MassBalance[:fl.nx-1]) NewIceThickness[-1] = thick[fl.nx-2] fl.thick = utils.clip_min(NewIceThickness, 0) # Next step self.t += dt return dt class SemiImplicitModel(FlowlineModel): """Semi implicit flowline model. It solves the same equation as the FluxBasedModel, but the ice flux q is implemented as q^t = D^t * (ds/dx)^(t+1). It supports only a single flowline (no tributaries) with bed shapes rectangular, trapezoidal or a mixture of both. """ def __init__(self, flowlines, mb_model=None, y0=0., glen_a=None, fs=0., inplace=False, fixed_dt=None, cfl_number=0.5, min_dt=None, **kwargs): """Instantiate the model. Parameters ---------- flowlines : list the glacier flowlines mb_model : MassBalanceModel the mass balance model y0 : int initial year of the simulation glen_a : float Glen's creep parameter fs : float Oerlemans sliding parameter inplace : bool wether to make a copy of the flowline objects for the run setting to True implies that your objects will be modified at run time by the model (can help to spare memory) fixed_dt : float set to a value (in seconds) to prevent adaptive time-stepping. cfl_number : float For adaptive time stepping (the default), dt is chosen from the CFL criterion (dt = cfl_number * dx^2 / max(D/w)). Can be set to higher values compared to the FluxBasedModel. Default is 0.5, but need further investigation. min_dt : float Defaults to cfg.PARAMS['cfl_min_dt']. At high velocities, time steps can become very small and your model might run very slowly. In production, it might be useful to set a limit below which the model will just error. kwargs : dict Further keyword arguments for FlowlineModel """ super(SemiImplicitModel, self).__init__(flowlines, mb_model=mb_model, y0=y0, glen_a=glen_a, fs=fs, inplace=inplace, **kwargs) if len(self.fls) > 1: raise ValueError('Implicit model does not work with ' 'tributaries.') # convert pure RectangularBedFlowline to TrapezoidalBedFlowline with # lambda = 0 if isinstance(self.fls[0], RectangularBedFlowline): self.fls[0] = TrapezoidalBedFlowline( line=self.fls[-1].line, dx=self.fls[-1].dx, map_dx=self.fls[-1].map_dx, surface_h=self.fls[-1].surface_h, bed_h=self.fls[-1].bed_h, widths=self.fls[-1].widths, lambdas=0, rgi_id=self.fls[-1].rgi_id, water_level=self.fls[-1].water_level, gdir=None) if isinstance(self.fls[0], MixedBedFlowline): if ~np.all(self.fls[0].is_trapezoid): raise ValueError('Implicit model only works with a pure ' 'trapezoidal flowline! But different lambdas ' 'along the flowline possible (lambda=0 is' 'rectangular).') elif not isinstance(self.fls[0], TrapezoidalBedFlowline): raise ValueError('Implicit model only works with a pure ' 'trapezoidal flowline! But different lambdas ' 'along the flowline possible (lambda=0 is' 'rectangular).') if cfg.PARAMS['use_kcalving_for_run']: raise NotImplementedError("Calving is not implemented in the" "SemiImplicitModel! Set " "cfg.PARAMS['use_kcalving_for_run'] = " "False or use a FluxBasedModel.") self.fixed_dt = fixed_dt if min_dt is None: min_dt = cfg.PARAMS['cfl_min_dt'] self.min_dt = min_dt if cfl_number is None: cfl_number = cfg.PARAMS['cfl_number'] if cfl_number < 0.1: raise InvalidParamsError("For the SemiImplicitModel you can use " "cfl numbers in the order of 0.1 - 0.5 " f"(you set {cfl_number}).") self.cfl_number = cfl_number # Special output self._surf_vel_fac = (self.glen_n + 2) / (self.glen_n + 1) # optim nx = self.fls[-1].nx bed_h_exp = np.concatenate(([self.fls[-1].bed_h[0]], self.fls[-1].bed_h, [self.fls[-1].bed_h[-1]])) self.dbed_h_exp_dx = ((bed_h_exp[1:] - bed_h_exp[:-1]) / self.fls[0].dx_meter) self.d_stag = [np.zeros(nx + 1)] self.d_matrix_banded = np.zeros((3, nx)) w0 = self.fls[0]._w0_m self.w0_stag = (w0[0:-1] + w0[1:]) / 2 self.rhog = (self.rho * G) ** self.glen_n # variables needed for the calculation of some diagnostics, this # calculations are done with @property, because they are not computed # on the fly during the dynamic run as in FluxBasedModel self._u_stag = [np.zeros(nx + 1)] self._flux_stag = [np.zeros(nx + 1)] self._slope_stag = [np.zeros(nx + 1)] self._thick_stag = [np.zeros(nx + 1)] self._section_stag = [np.zeros(nx + 1)] @property def slope_stag(self): slope_stag = self._slope_stag[0] surface_h = self.fls[0].surface_h dx = self.fls[0].dx_meter slope_stag[0] = 0 slope_stag[1:-1] = (surface_h[0:-1] - surface_h[1:]) / dx slope_stag[-1] = slope_stag[-2] return [slope_stag] @property def thick_stag(self): thick_stag = self._thick_stag[0] thick = self.fls[0].thick thick_stag[1:-1] = (thick[0:-1] + thick[1:]) / 2. thick_stag[[0, -1]] = thick[[0, -1]] return [thick_stag] @property def section_stag(self): section_stag = self._section_stag[0] section = self.fls[0].section section_stag[1:-1] = (section[0:-1] + section[1:]) / 2. section_stag[[0, -1]] = section[[0, -1]] return [section_stag] @property def u_stag(self): u_stag = self._u_stag[0] slope_stag = self.slope_stag[0] thick_stag = self.thick_stag[0] N = self.glen_n rhog = self.rhog rhogh = rhog * slope_stag ** N u_stag[:] = ((thick_stag**(N+1)) * self._fd * rhogh + (thick_stag**(N-1)) * self.fs * rhogh) return [u_stag] @property def flux_stag(self): flux_stag = self._flux_stag[0] section_stag = self.section_stag[0] u_stag = self.u_stag[0] flux_stag[:] = u_stag * section_stag return [flux_stag] def step(self, dt): """Advance one step.""" # Just a check to avoid useless computations if dt <= 0: raise InvalidParamsError('dt needs to be strictly positive') # read out variables from current flowline fl = self.fls[0] dx = fl.dx_meter width = fl.widths_m thick = fl.thick surface_h = fl.surface_h # some variables needed later N = self.glen_n rhog = self.rhog # calculate staggered variables width_stag = (width[0:-1] + width[1:]) / 2 w0_stag = self.w0_stag thick_stag = (thick[0:-1] + thick[1:]) / 2. dsdx_stag = (surface_h[1:] - surface_h[0:-1]) / dx # calculate diffusivity # boundary condition d_stag_0 = d_stag_end = 0 d_stag = self.d_stag[0] d_stag[1:-1] = ((self._fd * thick_stag ** (N + 2) + self.fs * thick_stag ** N) * rhog * (w0_stag + width_stag) / 2 * np.abs(dsdx_stag) ** (N - 1)) # Time step if self.fixed_dt: # change only if step dt is larger than the chosen dt if self.fixed_dt < dt: dt = self.fixed_dt else: # use stability criterion dt <= dx^2 / max(D/w) * cfl_number divisor = np.max(np.abs(d_stag[1:-1] / width_stag)) if divisor > cfg.FLOAT_EPS: cfl_dt = self.cfl_number * dx ** 2 / divisor else: cfl_dt = dt if cfl_dt < dt: dt = cfl_dt if cfl_dt < self.min_dt: raise RuntimeError( 'CFL error: required time step smaller ' 'than the minimum allowed: ' '{:.1f}s vs {:.1f}s. Happening at ' 'simulation year {:.1f}, fl_id {}, ' 'bin_id {} and max_D {:.3f} m2 yr-1.' ''.format(cfl_dt, self.min_dt, self.yr, 0, np.argmax(np.abs(d_stag)), divisor * cfg.SEC_IN_YEAR)) # calculate diagonals of Amat d0 = dt / dx ** 2 * (d_stag[:-1] + d_stag[1:]) / width dm = - dt / dx ** 2 * d_stag[:-1] / width dp = - dt / dx ** 2 * d_stag[1:] / width # construct banded form of the matrix, which is used during solving # (see https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_banded.html) # original matrix: # d_matrix = (np.diag(dp[:-1], 1) + # np.diag(np.ones(len(d0)) + d0) + # np.diag(dm[1:], -1)) self.d_matrix_banded[0, 1:] = dp[:-1] self.d_matrix_banded[1, :] = np.ones(len(d0)) + d0 self.d_matrix_banded[2, :-1] = dm[1:] # correction term for glacier bed (original equation is an equation for # the surface height s, which is transformed in an equation for h, as # s = h + b the term below comes from the '- b' b_corr = - d_stag * self.dbed_h_exp_dx # prepare rhs smb = self.get_mb(surface_h, self.yr, fl_id=0, fls=self.fls) rhs = thick + smb * dt + dt / width * (b_corr[:-1] - b_corr[1:]) / dx # solve matrix and update flowline thickness thick_new = utils.clip_min( solve_banded((1, 1), self.d_matrix_banded, rhs), 0) fl.thick = thick_new # Next step self.t += dt return dt def get_diagnostics(self, fl_id=-1): """Obtain model diagnostics in a pandas DataFrame. Parameters ---------- fl_id : int the index of the flowline of interest, from 0 to n_flowline-1. Default is to take the last (main) one Returns ------- a pandas DataFrame, which index is distance along flowline (m). Units: - surface_h, bed_h, ice_tick, section_width: m - section_area: m2 - slope: - - ice_flux, tributary_flux: m3 of *ice* per second - ice_velocity: m per second (depth-section integrated) - surface_ice_velocity: m per second (corrected for surface - simplified) """ import pandas as pd fl = self.fls[fl_id] nx = fl.nx df = pd.DataFrame(index=fl.dx_meter * np.arange(nx)) df.index.name = 'distance_along_flowline' df['surface_h'] = fl.surface_h df['bed_h'] = fl.bed_h df['ice_thick'] = fl.thick df['section_width'] = fl.widths_m df['section_area'] = fl.section # Staggered var = self.slope_stag[fl_id] df['slope'] = (var[1:nx+1] + var[:nx])/2 var = self.flux_stag[fl_id] df['ice_flux'] = (var[1:nx+1] + var[:nx])/2 var = self.u_stag[fl_id] df['ice_velocity'] = (var[1:nx+1] + var[:nx])/2 df['surface_ice_velocity'] = df['ice_velocity'] * self._surf_vel_fac return df
[docs] class FileModel(object): """Duck FlowlineModel which actually reads data out of a nc file."""
[docs] def __init__(self, path): """ Instantiate.""" self.fls = glacier_from_netcdf(path) fl_tss = [] for flid, fl in enumerate(self.fls): with xr.open_dataset(path, group='fl_{}'.format(flid)) as ds: if flid == 0: # Populate time self.time = ds.time.values try: self.years = ds.year.values except AttributeError: raise InvalidWorkflowError('The provided model output ' 'file is incomplete (likely ' 'when the previous ' 'run failed) or corrupt.') try: self.months = ds.month.values except AttributeError: self.months = self.years * 0 + 1 # Read out the data fl_data = { 'ts_section': ds.ts_section.values, 'ts_width_m': ds.ts_width_m.values, } try: fl_data['ts_calving_bucket_m3'] = ds.ts_calving_bucket_m3.values except AttributeError: fl_data['ts_calving_bucket_m3'] = self.years * 0 fl_tss.append(fl_data) self.fl_tss = fl_tss self.last_yr = float(ds.time[-1]) # Calving diags try: with xr.open_dataset(path) as ds: self._calving_m3_since_y0 = ds.calving_m3.values self.water_level = ds.water_level self.do_calving = True except AttributeError: self._calving_m3_since_y0 = 0 self.do_calving = False self.water_level = 0 # time self.reset_y0()
def __enter__(self): warnings.warn('FileModel no longer needs to be run as a ' 'context manager. You can safely remove the ' '`with` statement.', FutureWarning) return self def __exit__(self, exc_type, exc_value, traceback): pass def reset_y0(self, y0=None): """Reset the initial model time""" if y0 is None: y0 = float(self.time[0]) self.y0 = y0 self.yr = y0 self._current_index = 0 @property def area_m2(self): return np.sum([f.area_m2 for f in self.fls]) @property def volume_m3(self): return np.sum([f.volume_m3 for f in self.fls]) @property def volume_km3(self): return self.volume_m3 * 1e-9 @property def area_km2(self): return self.area_m2 * 1e-6 @property def length_m(self): return self.fls[-1].length_m @property def calving_m3_since_y0(self): if self.do_calving: return self._calving_m3_since_y0[self._current_index] else: return 0 def run_until(self, year=None, month=None): """Mimics the model's behavior. Is quite slow tbh. """ try: if month is not None: pok = np.nonzero((self.years == year) & (self.months == month))[0][0] else: pok = np.nonzero(self.time == year)[0][0] except IndexError as err: raise IndexError('Index year={}, month={} not available in ' 'FileModel.'.format(year, month)) from err self.yr = self.time[pok] self._current_index = pok for fl, fl_ts in zip(self.fls, self.fl_tss): fl.section = fl_ts['ts_section'][pok, :] fl.calving_bucket_m3 = fl_ts['ts_calving_bucket_m3'][pok] def area_m2_ts(self, rollmin=0): """rollmin is the number of years you want to smooth onto""" sel = 0 for fl, fl_ts in zip(self.fls, self.fl_tss): widths = np.where(fl_ts['ts_section'] > 0., fl_ts['ts_width_m'], 0.) sel += widths.sum(axis=1) * fl.dx_meter sel = pd.Series(data=sel, index=self.time, name='area_m2') if rollmin != 0: sel = sel.rolling(rollmin).min() sel.iloc[0:rollmin] = sel.iloc[rollmin] return sel def area_km2_ts(self, **kwargs): return self.area_m2_ts(**kwargs) * 1e-6 def volume_m3_ts(self): sel = 0 for fl, fl_ts in zip(self.fls, self.fl_tss): sel += fl_ts['ts_section'].sum(axis=1) * fl.dx_meter sel -= fl_ts['ts_calving_bucket_m3'] return pd.Series(data=sel, index=self.time, name='volume_m3') def volume_km3_ts(self): return self.volume_m3_ts() * 1e-9 def length_m_ts(self, rollmin=0): raise NotImplementedError('length_m_ts is no longer available in the ' 'full output files. To obtain the length ' 'time series, refer to the diagnostic ' 'output file.')
class MassRedistributionCurveModel(FlowlineModel): """Glacier geometry updated using mass redistribution curves. Also known as the "delta-h method": This uses mass redistribution curves from Huss et al. (2010) to update the glacier geometry. Code by David Rounce (PyGEM) and adapted by F. Maussion. """ def __init__(self, flowlines, mb_model=None, y0=0., is_tidewater=False, water_level=None, do_kcalving=None, calving_k=None, advance_method=1, **kwargs): """ Instantiate the model. Parameters ---------- flowlines : list the glacier flowlines mb_model : MassBalanceModel the mass balance model y0 : int initial year of the simulation advance_method : int different ways to handle positive MBs: - 0: do nothing, i.e. simply let the glacier thicken instead of thinning - 1: add some of the mass at the end of the glacier - 2: add some of the mass at the end of the glacier, but differently """ super(MassRedistributionCurveModel, self).__init__(flowlines, mb_model=mb_model, y0=y0, water_level=water_level, mb_elev_feedback='annual', required_model_steps='annual', **kwargs) if len(self.fls) > 1: raise InvalidWorkflowError('MassRedistributionCurveModel is not ' 'set up for multiple flowlines') fl = self.fls[0] self.glac_idx_initial = fl.thick.nonzero()[0] self.y0 = y0 # Some ways to deal with positive MB self.advance_method = advance_method # Frontal ablation shenanigans if do_kcalving is None: do_kcalving = cfg.PARAMS['use_kcalving_for_run'] self.do_calving = do_kcalving and self.is_tidewater if calving_k is None: calving_k = cfg.PARAMS['calving_k'] self.is_tidewater = is_tidewater self.calving_k = calving_k self.calving_m3_since_y0 = 0. # total calving since time y0 def step(self, dt): """Advance one step. Here it should be one year""" # Just a check to avoid useless computations if dt <= 0: raise InvalidParamsError('dt needs to be strictly positive') if dt > cfg.SEC_IN_YEAR: # This should not happen from how run_until is built, but # to match the adaptive time stepping scheme of other models # we don't complain here and just do one year dt = cfg.SEC_IN_YEAR elif dt < cfg.SEC_IN_YEAR: # Here however we complain - we really want one year exactly raise InvalidWorkflowError('I was asked to run for less than one ' 'year. Delta-H models can\'t do that.') # Flowline state fl = self.fls[0] fl_id = 0 height = fl.surface_h.copy() section = fl.section.copy() thick = fl.thick.copy() width = fl.widths_m.copy() # FRONTAL ABLATION if self.do_calving: raise NotImplementedError('Frontal ablation not there yet.') # Redistribute mass if glacier is still there if not np.any(section > 0): # Do nothing self.t += dt return dt # Mass redistribution according to Huss empirical curves # Annual glacier mass balance [m ice s-1] mb = self.get_mb(height, year=self.yr, fls=self.fls, fl_id=fl_id) # [m ice yr-1] mb *= cfg.SEC_IN_YEAR # Ok now to the bulk of it # Mass redistribution according to empirical equations from # Huss and Hock (2015) accounting for retreat/advance. # glac_idx_initial is required to ensure that the glacier does not # advance to area where glacier did not exist before # (e.g., retreat and advance over a vertical cliff) # Note: since OGGM uses the DEM, heights along the flowline do not # necessarily decrease, i.e., there can be overdeepenings along the # flowlines that occur as the glacier retreats. This is problematic # for 'adding' a bin downstream in cases of glacier advance because # you'd be moving new ice to a higher elevation. To avoid this # unrealistic case, in the event that this would occur, the # overdeepening will simply fill up with ice first until it reaches # an elevation where it would put new ice into a downstream bin. # Bin area [m2] bin_area = width * fl.dx_meter bin_area[thick == 0] = 0 # Annual glacier-wide volume change [m3] # units: m3 ice per year glacier_delta_v = (mb * bin_area).sum() # For hindcast simulations, volume change is the opposite # We don't implement this in OGGM right now # If volume loss is more than the glacier volume, melt everything and # stop here. Otherwise, redistribute mass loss/gains across the glacier glacier_volume_total = (section * fl.dx_meter).sum() if (glacier_volume_total + glacier_delta_v) < 0: # Set all to zero and return fl.section *= 0 return # Determine where glacier exists glac_idx = thick.nonzero()[0] # Compute bin volume change [m3 ice yr-1] after redistribution bin_delta_v = mass_redistribution_curve_huss(height, bin_area, mb, glac_idx, glacier_delta_v) # Here per construction bin_delta_v should be approx equal to glacier_delta_v np.testing.assert_allclose(bin_delta_v.sum(), glacier_delta_v) # Update cross sectional area # relevant issue: https://github.com/OGGM/oggm/issues/941 # volume change divided by length (dx); units m2 delta_s = bin_delta_v / fl.dx_meter fl.section = utils.clip_min(section + delta_s, 0) if not np.any(delta_s > 0): # We shrink - all good fl.section = utils.clip_min(section + delta_s, 0) # Done self.t += dt return dt # We grow - that's bad because growing is hard # First see what happens with thickness # (per construction the redistribution curves are all positive btw) fl.section = utils.clip_min(section + delta_s, 0) # We decide if we really want to advance or if we don't care # Matthias and Dave use 5m, I find that too much, because not # redistributing may lead to runaway effects dh_thres = 1 # in meters if np.all((fl.thick - thick) <= dh_thres): # That was not much increase return self.t += dt return dt # Ok, we really grow then - back to previous state and decide on what to do fl.section = section if (fl.thick[-2] > 0) or (self.advance_method == 0): # Do not advance (same as in the melting case but thickening) fl.section = utils.clip_min(section + delta_s, 0) if self.advance_method == 1: # Just shift the redistribution by one pix new_delta_s = np.append([0], delta_s)[:-1] # Redis param - how much of mass we want to shift (0 - 1) # 0 would be like method 0 (do nothing) # 1 would be to shift all mass by 1 pixel a = 0.2 new_delta_s = a * new_delta_s + (1 - a) * delta_s # Make sure we are still preserving mass new_delta_s *= delta_s.sum() / new_delta_s.sum() # Update section fl.section = utils.clip_min(section + new_delta_s, 0) elif self.advance_method == 2: # How much of what's positive do we want to add in front redis_perc = 0.01 # in % # Decide on volume that needs redistributed section_redis = delta_s * redis_perc # The rest is added where it was fl.section = utils.clip_min(section + delta_s - section_redis, 0) # Then lets put this "volume" where we can section_redis = section_redis.sum() while section_redis > 0: # Get the terminus grid orig_section = fl.section.copy() p_term = np.nonzero(fl.thick > 0)[0][-1] # Put ice on the next bin, until ice is as high as terminus # Anything else would require slope assumptions, but it would # be possible new_thick = fl.surface_h[p_term] - fl.bed_h[p_term + 1] if new_thick > 0: # No deepening fl.thick[p_term + 1] = new_thick new_section = fl.section[p_term + 1] if new_section > section_redis: # This would be too much, just add what we have orig_section[p_term + 1] = section_redis fl.section = orig_section section_redis = 0 else: # OK this bin is done, continue section_redis -= new_section else: # We have a deepening, or we have to climb target_h = fl.bed_h[p_term + 1] + 1 to_fill = (fl.surface_h < target_h) & (fl.thick > 0) # Theoretical section area needed fl.thick[to_fill] = target_h - fl.bed_h[to_fill] new_section = fl.section.sum() - orig_section.sum() if new_section > section_redis: # This would be too much, just add what we have orig_section[to_fill] += new_section / np.sum(to_fill) fl.section = orig_section section_redis = 0 else: # OK this bin is done, continue section_redis -= new_section elif self.advance_method == 3: # A bit closer to Huss and Rounce maybe? raise RuntimeError('not yet') # Done self.t += dt return dt def mass_redistribution_curve_huss(height, bin_area, mb, glac_idx, glacier_delta_v): """Apply the mass redistribution curves from Huss and Hock (2015). This has to be followed by added logic which takes into consideration retreat and advance. Parameters ---------- height : np.ndarray Glacier elevation [m] from previous year for each elevation bin bin_area : np.ndarray Glacier area [m2] from previous year for each elevation bin mb : np.ndarray Annual climatic mass balance [m ice yr-1] for each elevation bin for a single year glac_idx : np.ndarray glacier indices for present timestep glacier_delta_v : float glacier-wide volume change [m3 ice yr-1] based on the annual mb Returns ------- bin_volume_change : np.ndarray Ice volume change [m3 yr-1] for each elevation bin """ # Apply mass redistribution curve if glac_idx.shape[0] <= 3: # No need for a curve when glacier is so small return mb * bin_area # Select the parameters based on glacier area if bin_area.sum() * 1e-6 > 20: gamma, a, b, c = (6, -0.02, 0.12, 0) elif bin_area.sum() * 1e-6 > 5: gamma, a, b, c = (4, -0.05, 0.19, 0.01) else: gamma, a, b, c = (2, -0.30, 0.60, 0.09) # reset variables delta_h_norm = bin_area * 0 # Normalized elevation range [-] # (max elevation - bin elevation) / (max_elevation - min_elevation) gla_height = height[glac_idx] max_elev, min_elev = gla_height.max(), gla_height.min() h_norm = (max_elev - gla_height) / (max_elev - min_elev) # using indices as opposed to elevations automatically skips bins on # the glacier that have no area such that the normalization is done # only on bins where the glacier lies # Normalized ice thickness change [-] delta_h_norm[glac_idx] = (h_norm + a) ** gamma + b * (h_norm + a) + c # delta_h = (h_n + a)**gamma + b*(h_n + a) + c # limit normalized ice thickness change to between 0 - 1 delta_h_norm = utils.clip_array(delta_h_norm, 0, 1) # Huss' ice thickness scaling factor, fs_huss [m ice] # units: m3 / (m2 * [-]) * (1000 m / 1 km) = m ice fs_huss = glacier_delta_v / (bin_area * delta_h_norm).sum() # Volume change [m3 ice yr-1] return delta_h_norm * fs_huss * bin_area def flowline_from_dataset(ds): """Instantiates a flowline from an xarray Dataset.""" cl = globals()[ds.attrs['class']] line = shpg.LineString(ds['linecoords'].values) args = dict(line=line, dx=ds.dx, map_dx=ds.map_dx, surface_h=ds['surface_h'].values, bed_h=ds['bed_h'].values) have = {'c', 'x', 'surface_h', 'linecoords', 'bed_h', 'z', 'p', 'n', 'time', 'month', 'year', 'ts_width_m', 'ts_section', 'ts_calving_bucket_m3'} missing_vars = set(ds.variables.keys()).difference(have) for k in missing_vars: data = ds[k].values if ds[k].dims[0] == 'z': data = data[0] args[k] = data return cl(**args) def glacier_from_netcdf(path): """Instantiates a list of flowlines from an xarray Dataset.""" with xr.open_dataset(path) as ds: fls = [] for flid in ds['flowlines'].values: with xr.open_dataset(path, group='fl_{}'.format(flid)) as _ds: fls.append(flowline_from_dataset(_ds)) for i, fid in enumerate(ds['flows_to_id'].values): if fid != -1: fls[i].set_flows_to(fls[fid]) # Adds the line level for fl in fls: fl.order = line_order(fl) return fls def calving_glacier_downstream_line(line, n_points): """Extends a calving glacier flowline past the terminus.""" if line is None: return None x, y = line.coords.xy dx = x[-1] - x[-2] dy = y[-1] - y[-2] x = np.append(x, x[-1] + dx * np.arange(1, n_points+1)) y = np.append(y, y[-1] + dy * np.arange(1, n_points+1)) return shpg.LineString(np.array([x, y]).T)
[docs] @entity_task(log, writes=['model_flowlines']) def init_present_time_glacier(gdir, filesuffix='', use_binned_thickness_data=False): """Merges data from preprocessing tasks. First task after inversion! This updates the `mode_flowlines` file and creates a stand-alone numerical glacier ready to run. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process filesuffix : str append a suffix to the model_flowlines filename (e.g. useful for dynamic melt_f calibration including an inversion, so the original model_flowlines are not changed). use_binned_thickness_data : bool or str if you want to use thickness data, which was binned to the elevation band flowlines with tasks.elevation_band_flowine and tasks.fixed_dx_elevation_band_flowline, you can provide the name of the data here to create a flowline for a dynamic model run """ # Some vars invs = gdir.read_pickle('inversion_output') map_dx = gdir.grid.dx def_lambda = cfg.PARAMS['trapezoid_lambdas'] cls = gdir.read_pickle('inversion_flowlines') # Fill the tributaries new_fls = [] flows_to_ids = [] for cl, inv in zip(cls, invs): # Get the data to make the model flowlines line = cl.line surface_h = cl.surface_h widths_m = cl.widths * map_dx assert np.all(widths_m > 0) if not use_binned_thickness_data: # classical initialisation after the inversion section = inv['volume'] / (cl.dx * map_dx) bed_h = surface_h - inv['thick'] bed_shape = 4 * inv['thick'] / widths_m ** 2 lambdas = inv['thick'] * np.nan lambdas[inv['is_trapezoid']] = def_lambda lambdas[inv['is_rectangular']] = 0. # Where the flux and the thickness is zero we just assume trapezoid: lambdas[bed_shape == 0] = def_lambda else: # here we use binned thickness data for the initialisation elev_fl = pd.read_csv( gdir.get_filepath('elevation_band_flowline', filesuffix='_fixed_dx'), index_col=0) assert np.allclose(widths_m, elev_fl['widths_m']) elev_fl_thick = elev_fl[use_binned_thickness_data].values section = elev_fl_thick * widths_m lambdas = np.ones(len(section)) * def_lambda # for trapezoidal the calculation of thickness results in quadratic # equation, we only keep solution which results in a positive w0 # value (-> w/lambda >= h), # it still could happen that we would need a negative w0 if the # section is too large, in those cases we get a negative value # inside sqrt (we ignore the RuntimeWarning) -> if this happens we # use rectangular shape with original thickness with np.errstate(invalid='ignore'): thick = ((2 * widths_m - np.sqrt(4 * widths_m ** 2 - 4 * lambdas * 2 * section)) / (2 * lambdas)) nan_thick = np.isnan(thick) thick[nan_thick] = elev_fl_thick[nan_thick] lambdas[nan_thick] = 0 # finally the glacier bed and other stuff bed_h = surface_h - thick bed_shape = 4 * thick / widths_m ** 2 if not gdir.is_tidewater and inv['is_last']: # for valley glaciers, simply add the downstream line, depending on # selected shape parabola or trapezoidal dic_ds = gdir.read_pickle('downstream_line') if cfg.PARAMS['downstream_line_shape'] == 'parabola': bed_shape = np.append(bed_shape, dic_ds['bedshapes']) lambdas = np.append(lambdas, dic_ds['bedshapes'] * np.nan) widths_m = np.append(widths_m, dic_ds['bedshapes'] * 0.) elif cfg.PARAMS['downstream_line_shape'] == 'trapezoidal': bed_shape = np.append(bed_shape, dic_ds['bedshapes'] * np.nan) lambdas = np.append(lambdas, np.ones(len(dic_ds['w0s'])) * def_lambda) widths_m = np.append(widths_m, dic_ds['w0s']) else: raise InvalidParamsError( f"Unknown cfg.PARAMS['downstream_line_shape'] = " f"{cfg.PARAMS['downstream_line_shape']} (options are " f"'parabola' and 'trapezoidal').") section = np.append(section, dic_ds['bedshapes'] * 0.) surface_h = np.append(surface_h, dic_ds['surface_h']) bed_h = np.append(bed_h, dic_ds['surface_h']) line = dic_ds['full_line'] if gdir.is_tidewater and inv['is_last']: # Continue the bed a little n_points = cfg.PARAMS['calving_line_extension'] cf_slope = cfg.PARAMS['calving_front_slope'] deepening = n_points * cl.dx * map_dx * cf_slope line = calving_glacier_downstream_line(line, n_points=n_points) bed_shape = np.append(bed_shape, np.zeros(n_points)) lambdas = np.append(lambdas, np.zeros(n_points)) section = np.append(section, np.zeros(n_points)) # The bed slowly deepens bed_down = np.linspace(bed_h[-1], bed_h[-1]-deepening, n_points) bed_h = np.append(bed_h, bed_down) surface_h = np.append(surface_h, bed_down) widths_m = np.append(widths_m, np.zeros(n_points) + np.mean(widths_m[-5:])) nfl = MixedBedFlowline(line=line, dx=cl.dx, map_dx=map_dx, surface_h=surface_h, bed_h=bed_h, section=section, bed_shape=bed_shape, is_trapezoid=np.isfinite(lambdas), lambdas=lambdas, widths_m=widths_m, rgi_id=cl.rgi_id, gdir=gdir) # Update attrs if cl.flows_to: flows_to_ids.append(cls.index(cl.flows_to)) else: flows_to_ids.append(None) new_fls.append(nfl) # Finalize the linkages for fl, fid in zip(new_fls, flows_to_ids): if fid: fl.set_flows_to(new_fls[fid]) # Adds the line level for fl in new_fls: fl.order = line_order(fl) # Write the data gdir.write_pickle(new_fls, 'model_flowlines', filesuffix=filesuffix)
def decide_evolution_model(evolution_model=None): """Simple utility to check and apply user choices in cfg.PARAMS""" if evolution_model is not None: return evolution_model from_cfg = cfg.PARAMS['evolution_model'].lower() if from_cfg == 'SemiImplicit'.lower(): evolution_model = SemiImplicitModel elif from_cfg == 'FluxBased'.lower(): evolution_model = FluxBasedModel elif from_cfg == 'MassRedistributionCurve'.lower(): evolution_model = MassRedistributionCurveModel else: raise InvalidParamsError("PARAMS['evolution_model'] not recognized" f": {from_cfg}.") return evolution_model
[docs] @entity_task(log) def flowline_model_run(gdir, output_filesuffix=None, mb_model=None, ys=None, ye=None, zero_initial_glacier=False, init_model_fls=None, store_monthly_step=False, glen_a_fac=None, fs_fac=None, fixed_geometry_spinup_yr=None, store_model_geometry=None, store_fl_diagnostics=None, water_level=None, evolution_model=None, stop_criterion=None, init_model_filesuffix=None, init_model_yr=None, **kwargs): """Runs a model simulation with the default time stepping scheme. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process output_filesuffix : str this adds a suffix to the output file (useful to avoid overwriting previous experiments) mb_model : :py:class:`core.MassBalanceModel` a MassBalanceModel instance ys : int start year of the model run (needs to be set) ye : int end year of the model run (need to be set) zero_initial_glacier : bool if true, the ice thickness is set to zero before the simulation init_model_filesuffix : str if you want to start from a previous model run state. Can be combined with `init_model_yr` init_model_yr : int the year of the initial run you want to start from. The default is to take the last year of the simulation. init_model_fls : [] list of flowlines to use to initialise the model (the default is the present_time_glacier file from the glacier directory) store_monthly_step : bool whether to store the diagnostic data at a monthly time step or not (default is yearly) glen_a_fac : float perturbate the default glen_a (either from the inversion if PARAMS['use_inversion_params_for_run'] is True or PARAMS['glen_a'] if False) with a chosen multiplicative parameter. Useful for parameter perturbation experiments. fs_fac : float same as glen_a_fac but for sliding store_model_geometry : bool whether to store the full model geometry run file to disk or not. (new in OGGM v1.4.1: default is to follow cfg.PARAMS['store_model_geometry']) store_fl_diagnostics : bool whether to store the model flowline diagnostics to disk or not. (default is to follow cfg.PARAMS['store_fl_diagnostics']) evolution_model : :class:oggm.core.FlowlineModel which evolution model to use. Default: cfg.PARAMS['evolution_model'] Not all models work in all circumstances! water_level : float the water level. It should be zero m a.s.l, but: - sometimes the frontal elevation is unrealistically high (or low). - lake terminating glaciers - other uncertainties The default is to take the water level obtained from the ice thickness inversion. stop_criterion : func a function which decides on when to stop the simulation. See `run_until_and_store` documentation for more information. kwargs : dict kwargs to pass to the FluxBasedModel instance fixed_geometry_spinup_yr : int if set to an integer, the model will artificially prolongate all outputs of run_until_and_store to encompass all time stamps starting from the chosen year. The only output affected are the glacier wide diagnostic files - all other outputs are set to constants during "spinup" """ if init_model_filesuffix is not None: fp = gdir.get_filepath('model_geometry', filesuffix=init_model_filesuffix) fmod = FileModel(fp) if init_model_yr is None: init_model_yr = fmod.last_yr fmod.run_until(init_model_yr) init_model_fls = fmod.fls if ys != init_model_yr and ys != 0: log.warning(f"You are starting a run with ys={ys} " f"and init_model_yr={init_model_yr}.") mb_elev_feedback = kwargs.get('mb_elev_feedback', 'annual') if store_monthly_step and (mb_elev_feedback == 'annual'): warnings.warn("The mass balance used to drive the ice dynamics model " "is updated yearly. If you want the output to be stored " "monthly and also reflect monthly processes, " "set store_monthly_step=True and " "mb_elev_feedback='monthly'. This is not recommended " "though: for monthly MB applications, we recommend to " "use the `run_with_hydro` task.") if cfg.PARAMS['use_inversion_params_for_run']: diag = gdir.get_diagnostics() fs = diag.get('inversion_fs', cfg.PARAMS['fs']) glen_a = diag.get('inversion_glen_a', cfg.PARAMS['glen_a']) else: fs = cfg.PARAMS['fs'] glen_a = cfg.PARAMS['glen_a'] if glen_a_fac is not None: glen_a *= glen_a_fac if fs_fac is not None: fs *= fs_fac kwargs.setdefault('fs', fs) kwargs.setdefault('glen_a', glen_a) if store_model_geometry is None: store_model_geometry = cfg.PARAMS['store_model_geometry'] if store_fl_diagnostics is None: store_fl_diagnostics = cfg.PARAMS['store_fl_diagnostics'] if store_model_geometry: geom_path = gdir.get_filepath('model_geometry', filesuffix=output_filesuffix, delete=True) else: geom_path = False if store_fl_diagnostics: fl_diag_path = gdir.get_filepath('fl_diagnostics', filesuffix=output_filesuffix, delete=True) else: fl_diag_path = False diag_path = gdir.get_filepath('model_diagnostics', filesuffix=output_filesuffix, delete=True) if init_model_fls is None: fls = gdir.read_pickle('model_flowlines') else: fls = copy.deepcopy(init_model_fls) if zero_initial_glacier: for fl in fls: fl.thick = fl.thick * 0. evolution_model = decide_evolution_model(evolution_model) if (cfg.PARAMS['use_kcalving_for_run'] and gdir.is_tidewater and water_level is None): # check for water level water_level = gdir.get_diagnostics().get('calving_water_level', None) if water_level is None: raise InvalidWorkflowError('This tidewater glacier seems to not ' 'have been inverted with the ' '`find_inversion_calving` task. Set ' "PARAMS['use_kcalving_for_run'] to " '`False` or set `water_level` ' 'to prevent this error.') model = evolution_model(fls, mb_model=mb_model, y0=ys, inplace=True, is_tidewater=gdir.is_tidewater, is_lake_terminating=gdir.is_lake_terminating, water_level=water_level, **kwargs) with warnings.catch_warnings(): # For operational runs we ignore the warnings warnings.filterwarnings('ignore', category=RuntimeWarning) model.run_until_and_store(ye, geom_path=geom_path, diag_path=diag_path, fl_diag_path=fl_diag_path, store_monthly_step=store_monthly_step, fixed_geometry_spinup_yr=fixed_geometry_spinup_yr, stop_criterion=stop_criterion) return model
[docs] @entity_task(log) def run_random_climate(gdir, nyears=1000, y0=None, halfsize=15, ys=None, ye=None, bias=0, seed=None, temperature_bias=None, precipitation_factor=None, store_monthly_step=False, store_model_geometry=None, store_fl_diagnostics=None, mb_model_class=MonthlyTIModel, climate_filename='climate_historical', climate_input_filesuffix='', output_filesuffix='', init_model_fls=None, init_model_filesuffix=None, init_model_yr=None, zero_initial_glacier=False, unique_samples=False, **kwargs): """Runs the random mass balance model for a given number of years. This will initialize a :py:class:`oggm.core.massbalance.MultipleFlowlineMassBalance`, and run a :py:func:`oggm.core.flowline.flowline_model_run`. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process nyears : int length of the simulation ys : int, default: 0 or init_model_yr first year of the fake output timeseries. Since these simulations are idealized, the concept of "time" is only relative to the start of the simulation. ye : int, default: nyears can be used instead of "nyears" y0 : int central year of the random climate period. Has to be set! halfsize : int, optional the half-size of the time window (window size = 2 * halfsize + 1) bias : float bias of the mb model (offset to add to the MB). Default is zero. seed : int seed for the random generator. If you ignore this, the runs will be different each time. Setting it to a fixed seed across glaciers can be useful if you want to have the same climate years for all of them temperature_bias : float add a bias to the temperature timeseries (note that this is added to any bias that the calibration decided is needed) precipitation_factor: float multiply a factor to the precipitation time series (note that this factor is multiplied to any factor that was decided during calibration or by global parameters) store_monthly_step : bool whether to store the diagnostic data at a monthly time step or not (default is yearly) store_model_geometry : bool whether to store the full model geometry run file to disk or not. (new in OGGM v1.4.1: default is to follow cfg.PARAMS['store_model_geometry']) store_fl_diagnostics : bool whether to store the model flowline diagnostics to disk or not. (default is to follow cfg.PARAMS['store_fl_diagnostics']) mb_model_class : MassBalanceModel class The MassBalanceModel class to use inside the RandomMassBalance (default MonthlyTIModel) climate_filename : str name of the climate file, e.g. 'climate_historical' (default) or 'gcm_data' climate_input_filesuffix: str filesuffix for the input climate file output_filesuffix : str this add a suffix to the output file (useful to avoid overwriting previous experiments) init_model_filesuffix : str if you want to start from a previous model run state. Can be combined with `init_model_yr` init_model_yr : int the year of the initial run you want to start from. The default is to take the last year of the simulation. init_model_fls : [] list of flowlines to use to initialise the model (the default is the present_time_glacier file from the glacier directory) zero_initial_glacier : bool if true, the ice thickness is set to zero before the simulation unique_samples: bool if true, chosen random mass balance years will only be available once per random climate period-length if false, every model year will be chosen from the random climate period with the same probability kwargs : dict kwargs to pass to the flowline_model_run task """ mb_model = MultipleFlowlineMassBalance(gdir, mb_model_class=partial( RandomMassBalance, mb_model_class=mb_model_class), y0=y0, halfsize=halfsize, bias=bias, seed=seed, filename=climate_filename, input_filesuffix=climate_input_filesuffix, unique_samples=unique_samples) if temperature_bias is not None: mb_model.temp_bias += temperature_bias if precipitation_factor is not None: mb_model.prcp_fac *= precipitation_factor if ys is None: ys = init_model_yr if init_model_yr is not None else 0 if ye is None: ye = ys + nyears return flowline_model_run(gdir, output_filesuffix=output_filesuffix, mb_model=mb_model, ys=ys, ye=ye, store_monthly_step=store_monthly_step, store_model_geometry=store_model_geometry, store_fl_diagnostics=store_fl_diagnostics, init_model_filesuffix=init_model_filesuffix, init_model_yr=init_model_yr, init_model_fls=init_model_fls, zero_initial_glacier=zero_initial_glacier, **kwargs)
[docs] @entity_task(log) def run_constant_climate(gdir, nyears=1000, y0=None, halfsize=15, ys=None, ye=None, bias=0, temperature_bias=None, precipitation_factor=None, store_monthly_step=False, store_model_geometry=None, store_fl_diagnostics=None, init_model_filesuffix=None, init_model_yr=None, output_filesuffix='', climate_filename='climate_historical', mb_model_class=MonthlyTIModel, climate_input_filesuffix='', init_model_fls=None, zero_initial_glacier=False, **kwargs): """Runs the constant mass balance model for a given number of years. This will initialize a :py:class:`oggm.core.massbalance.MultipleFlowlineMassBalance`, and run a :py:func:`oggm.core.flowline.flowline_model_run`. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process nyears : int length of the simulation (default: as long as needed for reaching equilibrium) ys : int, default: 0 or init_model_yr first year of the fake output timeseries. Since these simulations are idealized, the concept of "time" is only relative to the start of the simulation. ye : int, default: nyears can be used instead of "nyears" y0 : int central year of the random climate period. Has to be set! halfsize : int, optional the half-size of the time window (window size = 2 * halfsize + 1) bias : float bias of the mb model (offset to add to the MB). Default is zero. temperature_bias : float add a bias to the temperature timeseries (note that this is added to any bias that the calibration decided is needed) precipitation_factor: float multiply a factor to the precipitation time series (note that this factor is multiplied to any factor that was decided during calibration or by global parameters) store_monthly_step : bool whether to store the diagnostic data at a monthly time step or not (default is yearly) store_model_geometry : bool whether to store the full model geometry run file to disk or not. (new in OGGM v1.4.1: default is to follow cfg.PARAMS['store_model_geometry']) store_fl_diagnostics : bool whether to store the model flowline diagnostics to disk or not. (default is to follow cfg.PARAMS['store_fl_diagnostics']) init_model_filesuffix : str if you want to start from a previous model run state. Can be combined with `init_model_yr` init_model_yr : int the year of the initial run you want to start from. The default is to take the last year of the simulation. climate_filename : str name of the climate file, e.g. 'climate_historical' (default) or 'gcm_data' mb_model_class : MassBalanceModel class The MassBalanceModel class to use inside the ConstantMassBalance (default MonthlyTIModel) climate_input_filesuffix: str filesuffix for the input climate file output_filesuffix : str this add a suffix to the output file (useful to avoid overwriting previous experiments) zero_initial_glacier : bool if true, the ice thickness is set to zero before the simulation init_model_fls : [] list of flowlines to use to initialize the model (the default is the present_time_glacier file from the glacier directory) kwargs : dict kwargs to pass to the flowline_model_run task """ mb_model = MultipleFlowlineMassBalance(gdir, mb_model_class=partial( ConstantMassBalance, mb_model_class=mb_model_class), y0=y0, halfsize=halfsize, bias=bias, filename=climate_filename, input_filesuffix=climate_input_filesuffix) if temperature_bias is not None: mb_model.temp_bias += temperature_bias if precipitation_factor is not None: mb_model.prcp_fac *= precipitation_factor if ys is None: ys = init_model_yr if init_model_yr is not None else 0 if ye is None: ye = ys + nyears return flowline_model_run(gdir, output_filesuffix=output_filesuffix, mb_model=mb_model, ys=ys, ye=ye, store_monthly_step=store_monthly_step, store_model_geometry=store_model_geometry, store_fl_diagnostics=store_fl_diagnostics, init_model_filesuffix=init_model_filesuffix, init_model_yr=init_model_yr, init_model_fls=init_model_fls, zero_initial_glacier=zero_initial_glacier, **kwargs)
[docs] @entity_task(log) def run_from_climate_data(gdir, ys=None, ye=None, min_ys=None, max_ys=None, fixed_geometry_spinup_yr=None, store_monthly_step=False, store_model_geometry=None, store_fl_diagnostics=None, climate_filename='climate_historical', mb_model=None, mb_model_class=MonthlyTIModel, climate_input_filesuffix='', output_filesuffix='', init_model_filesuffix=None, init_model_yr=None, init_model_fls=None, zero_initial_glacier=False, bias=0, temperature_bias=None, precipitation_factor=None, **kwargs): """ Runs a glacier with climate input from e.g. CRU or a GCM. This will initialize a :py:class:`oggm.core.massbalance.MultipleFlowlineMassBalance`, and run a :py:func:`oggm.core.flowline.flowline_model_run`. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process ys : int start year of the model run (default: from the glacier geometry date if init_model_filesuffix is None, else init_model_yr) ye : int end year of the model run (default: last year of the provided climate file) min_ys : int if you want to impose a minimum start year, regardless if the glacier inventory date is earlier (e.g. if climate data does not reach). max_ys : int if you want to impose a maximum start year, regardless if the glacier inventory date is later (e.g. if climate data does not reach). store_monthly_step : bool whether to store the diagnostic data at a monthly time step or not (default is yearly) store_model_geometry : bool whether to store the full model geometry run file to disk or not. (new in OGGM v1.4.1: default is to follow cfg.PARAMS['store_model_geometry']) store_fl_diagnostics : bool whether to store the model flowline diagnostics to disk or not. (default is to follow cfg.PARAMS['store_fl_diagnostics']) climate_filename : str name of the climate file, e.g. 'climate_historical' (default) or 'gcm_data' mb_model : :py:class:`core.MassBalanceModel` User-povided MassBalanceModel instance. Default is to use a mb_model_class instance (default MonthlyTIModel) together with the provided parameters climate_filename, bias and climate_input_filesuffix. mb_model_class : MassBalanceModel class the MassBalanceModel class to use, default is MonthlyTIModel climate_input_filesuffix: str filesuffix for the input climate file output_filesuffix : str for the output file init_model_filesuffix : str if you want to start from a previous model run state. Can be combined with `init_model_yr` init_model_yr : int the year of the initial run you want to start from. The default is to take the last year of the simulation. init_model_fls : [] list of flowlines to use to initialise the model (the default is the present_time_glacier file from the glacier directory). Ignored if `init_model_filesuffix` is set zero_initial_glacier : bool if true, the ice thickness is set to zero before the simulation bias : float bias of the mb model (offset to add to the MB). Default is zero. temperature_bias : float add a bias to the temperature timeseries (note that this is added to any bias that the calibration decided is needed) precipitation_factor: float multiply a factor to the precipitation time series (note that this factor is multiplied to any factor that was decided during calibration or by global parameters) fixed_geometry_spinup_yr : int if set to an integer, the model will artificially prolongate all outputs of run_until_and_store to encompass all time stamps starting from the chosen year. The only output affected are the glacier wide diagnostic files - all other outputs are set to constants during "spinup" kwargs : dict kwargs to pass to the flowline_model_run task """ if init_model_filesuffix is not None: fp = gdir.get_filepath('model_geometry', filesuffix=init_model_filesuffix) fmod = FileModel(fp) if init_model_yr is None: init_model_yr = fmod.last_yr fmod.run_until(init_model_yr) init_model_fls = fmod.fls if ys is None: ys = init_model_yr try: rgi_year = gdir.rgi_date.year except AttributeError: rgi_year = gdir.rgi_date # Take from rgi date if not set yet if ys is None: # See also: https://github.com/OGGM/oggm/issues/1020 # Even in calendar dates, we prefer to start in the next year # as the rgi is often from snow free images the year before (e.g. Aug) ys = rgi_year + 1 if ys <= rgi_year and init_model_filesuffix is None: log.warning('You are attempting to run_with_climate_data at dates ' 'prior to the RGI inventory date. This may indicate some ' 'problem in your workflow. Consider using ' '`fixed_geometry_spinup_yr` for example.') # Final crop if min_ys is not None: ys = ys if ys > min_ys else min_ys if max_ys is not None: ys = ys if ys < max_ys else max_ys if mb_model is None: mb_model = MultipleFlowlineMassBalance(gdir, mb_model_class=mb_model_class, filename=climate_filename, bias=bias, input_filesuffix=climate_input_filesuffix) if temperature_bias is not None: mb_model.temp_bias += temperature_bias if precipitation_factor is not None: mb_model.prcp_fac *= precipitation_factor if ye is None: # Decide from climate (we can run the last year with data as well) ye = mb_model.flowline_mb_models[0].ye + 1 return flowline_model_run(gdir, output_filesuffix=output_filesuffix, mb_model=mb_model, ys=ys, ye=ye, store_monthly_step=store_monthly_step, store_model_geometry=store_model_geometry, store_fl_diagnostics=store_fl_diagnostics, init_model_fls=init_model_fls, zero_initial_glacier=zero_initial_glacier, fixed_geometry_spinup_yr=fixed_geometry_spinup_yr, **kwargs)
[docs] @entity_task(log) def run_with_hydro(gdir, run_task=None, store_monthly_hydro=False, fixed_geometry_spinup_yr=None, ref_area_from_y0=False, ref_area_yr=None, ref_geometry_filesuffix=None, **kwargs): """Run the flowline model and add hydro diagnostics. TODOs: - Add the possibility to record MB during run to improve performance (requires change in API) - ... Parameters ---------- run_task : func any of the `run_*`` tasks in the oggm.flowline module. The mass balance model used needs to have the `add_climate` output kwarg available though. store_monthly_hydro : bool also compute monthly hydrological diagnostics. The monthly outputs are stored in 2D fields (years, months) ref_area_yr : int the hydrological output is computed over a reference area, which per default is the largest area covered by the glacier in the simulation period. Use this kwarg to force a specific area to the state of the glacier at the provided simulation year. ref_area_from_y0 : bool overwrite ref_area_yr to the first year of the timeseries ref_geometry_filesuffix : str this kwarg allows to copy the reference area from a previous simulation (useful for projections with historical spinup for example). Set to a model_geometry file filesuffix that is present in the current directory (e.g. `_historical` for pre-processed gdirs). If set, ref_area_yr and ref_area_from_y0 refer to this file instead. fixed_geometry_spinup_yr : int if set to an integer, the model will artificially prolongate all outputs of run_until_and_store to encompass all time stamps starting from the chosen year. The only output affected are the glacier wide diagnostic files - all other outputs are set to constants during "spinup" **kwargs : all valid kwargs for ``run_task`` """ # Make sure it'll return something kwargs['return_value'] = True # Check that kwargs and params are compatible if kwargs.get('store_monthly_step', False): raise InvalidParamsError('run_with_hydro only compatible with ' 'store_monthly_step=False.') if kwargs.get('mb_elev_feedback', 'annual') != 'annual': raise InvalidParamsError('run_with_hydro only compatible with ' "mb_elev_feedback='annual' (yes, even " "when asked for monthly hydro output).") if not cfg.PARAMS['store_model_geometry']: raise InvalidParamsError('run_with_hydro only works with ' "PARAMS['store_model_geometry'] = True " "for now.") if fixed_geometry_spinup_yr is not None: kwargs['fixed_geometry_spinup_yr'] = fixed_geometry_spinup_yr out = run_task(gdir, **kwargs) if out is None: raise InvalidWorkflowError('The run task ({}) did not run ' 'successfully.'.format(run_task.__name__)) do_spinup = fixed_geometry_spinup_yr is not None if do_spinup: start_dyna_model_yr = out.y0 # Mass balance model used during the run mb_mod = out.mb_model # Glacier geometry during the run suffix = kwargs.get('output_filesuffix', '') # We start by fetching the reference model geometry # The one we just computed fmod = FileModel(gdir.get_filepath('model_geometry', filesuffix=suffix)) # The last one is the final state - we can't compute MB for that years = fmod.years[:-1] if ref_geometry_filesuffix: if not ref_area_from_y0 and ref_area_yr is None: raise InvalidParamsError('If `ref_geometry_filesuffix` is set, ' 'users need to specify `ref_area_from_y0`' ' or `ref_area_yr`') # User provided fmod_ref = FileModel(gdir.get_filepath('model_geometry', filesuffix=ref_geometry_filesuffix)) else: # ours as well fmod_ref = fmod # Check input if ref_area_from_y0: ref_area_yr = fmod_ref.years[0] # Geometry at year yr to start with + off-glacier snow bucket if ref_area_yr is not None: if ref_area_yr not in fmod_ref.years: raise InvalidParamsError('The chosen ref_area_yr is not ' 'available!') fmod_ref.run_until(ref_area_yr) bin_area_2ds = [] bin_elev_2ds = [] ref_areas = [] snow_buckets = [] for fl in fmod_ref.fls: # Glacier area on bins bin_area = fl.bin_area_m2 ref_areas.append(bin_area) snow_buckets.append(bin_area * 0) # Output 2d data shape = len(years), len(bin_area) bin_area_2ds.append(np.empty(shape, np.float64)) bin_elev_2ds.append(np.empty(shape, np.float64)) # Ok now fetch all geometry data in a first loop # We do that because we might want to get the largest possible area (default) # and we want to minimize the number of calls to run_until for i, yr in enumerate(years): fmod.run_until(yr) for fl_id, (fl, bin_area_2d, bin_elev_2d) in \ enumerate(zip(fmod.fls, bin_area_2ds, bin_elev_2ds)): # Time varying bins bin_area_2d[i, :] = fl.bin_area_m2 bin_elev_2d[i, :] = fl.surface_h if ref_area_yr is None: # Ok we get the max area instead for ref_area, bin_area_2d in zip(ref_areas, bin_area_2ds): ref_area[:] = bin_area_2d.max(axis=0) # Ok now we have arrays, we can work with that # -> second time varying loop is for mass balance months = [1] seconds = cfg.SEC_IN_YEAR ntime = len(years) + 1 oshape = (ntime, 1) if store_monthly_hydro: months = np.arange(1, 13) seconds = cfg.SEC_IN_MONTH oshape = (ntime, 12) out = { 'off_area': { 'description': 'Off-glacier area', 'unit': 'm 2', 'data': np.zeros(ntime), }, 'on_area': { 'description': 'On-glacier area', 'unit': 'm 2', 'data': np.zeros(ntime), }, 'melt_off_glacier': { 'description': 'Off-glacier melt', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'melt_on_glacier': { 'description': 'On-glacier melt', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'melt_residual_off_glacier': { 'description': 'Off-glacier melt due to MB model residual', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'melt_residual_on_glacier': { 'description': 'On-glacier melt due to MB model residual', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'liq_prcp_off_glacier': { 'description': 'Off-glacier liquid precipitation', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'liq_prcp_on_glacier': { 'description': 'On-glacier liquid precipitation', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'snowfall_off_glacier': { 'description': 'Off-glacier solid precipitation', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'snowfall_on_glacier': { 'description': 'On-glacier solid precipitation', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'snow_bucket': { 'description': 'Off-glacier snow reservoir (state variable)', 'unit': 'kg', 'data': np.zeros(oshape), }, 'model_mb': { 'description': 'Annual mass balance from dynamical model', 'unit': 'kg yr-1', 'data': np.zeros(ntime), }, 'residual_mb': { 'description': 'Difference (before correction) between mb model and dyn model melt', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, } # Initialize fmod.run_until(years[0]) prev_model_vol = fmod.volume_m3 for i, yr in enumerate(years): # Now the loop over the months for m in months: # A bit silly but avoid double counting in monthly ts off_area_out = 0 on_area_out = 0 for fl_id, (ref_area, snow_bucket, bin_area_2d, bin_elev_2d) in \ enumerate(zip(ref_areas, snow_buckets, bin_area_2ds, bin_elev_2ds)): bin_area = bin_area_2d[i, :] bin_elev = bin_elev_2d[i, :] # Make sure we have no negative contribution when glaciers are out off_area = utils.clip_min(ref_area - bin_area, 0) try: if store_monthly_hydro: flt_yr = utils.date_to_floatyear(int(yr), m) mb_out = mb_mod.get_monthly_mb(bin_elev, fl_id=fl_id, year=flt_yr, add_climate=True) mb, _, _, prcp, prcpsol = mb_out else: mb_out = mb_mod.get_annual_mb(bin_elev, fl_id=fl_id, year=yr, add_climate=True) mb, _, _, prcp, prcpsol = mb_out except ValueError as e: if 'too many values to unpack' in str(e): raise InvalidWorkflowError('Run with hydro needs a MB ' 'model able to add climate ' 'info to `get_annual_mb`.') raise # Here we use mass (kg yr-1) not ice volume mb *= seconds * cfg.PARAMS['ice_density'] # Bias of the mb model is a fake melt term that we need to deal with # This is here for correction purposes later mb_bias = mb_mod.bias * seconds / cfg.SEC_IN_YEAR liq_prcp_on_g = (prcp - prcpsol) * bin_area liq_prcp_off_g = (prcp - prcpsol) * off_area prcpsol_on_g = prcpsol * bin_area prcpsol_off_g = prcpsol * off_area # IMPORTANT: this does not guarantee that melt cannot be negative # the reason is the MB residual that here can only be understood # as a fake melt process. # In particular at the monthly scale this can lead to negative # or winter positive melt - we try to mitigate this # issue at the end of the year melt_on_g = (prcpsol - mb) * bin_area melt_off_g = (prcpsol - mb) * off_area if mb_mod.bias == 0: # melt_on_g and melt_off_g can be negative, but the absolute # values are very small. so we clip them to zero melt_on_g = utils.clip_min(melt_on_g, 0) melt_off_g = utils.clip_min(melt_off_g, 0) # This is the bad boy bias_on_g = mb_bias * bin_area bias_off_g = mb_bias * off_area # Update bucket with accumulation and melt snow_bucket += prcpsol_off_g # It can only melt that much melt_off_g = np.where((snow_bucket - melt_off_g) >= 0, melt_off_g, snow_bucket) # Update bucket snow_bucket -= melt_off_g # This is recomputed each month but well off_area_out += np.sum(off_area) on_area_out += np.sum(bin_area) # Monthly out out['melt_off_glacier']['data'][i, m-1] += np.sum(melt_off_g) out['melt_on_glacier']['data'][i, m-1] += np.sum(melt_on_g) out['melt_residual_off_glacier']['data'][i, m-1] += np.sum(bias_off_g) out['melt_residual_on_glacier']['data'][i, m-1] += np.sum(bias_on_g) out['liq_prcp_off_glacier']['data'][i, m-1] += np.sum(liq_prcp_off_g) out['liq_prcp_on_glacier']['data'][i, m-1] += np.sum(liq_prcp_on_g) out['snowfall_off_glacier']['data'][i, m-1] += np.sum(prcpsol_off_g) out['snowfall_on_glacier']['data'][i, m-1] += np.sum(prcpsol_on_g) # Snow bucket is a state variable - stored at end of timestamp if store_monthly_hydro: if m == 12: out['snow_bucket']['data'][i+1, 0] += np.sum(snow_bucket) else: out['snow_bucket']['data'][i, m] += np.sum(snow_bucket) else: out['snow_bucket']['data'][i+1, m-1] += np.sum(snow_bucket) # Update the annual data out['off_area']['data'][i] = off_area_out out['on_area']['data'][i] = on_area_out # If monthly, put the residual where we can if store_monthly_hydro and mb_mod.bias != 0: for melt, bias in zip( [ out['melt_on_glacier']['data'][i, :], out['melt_off_glacier']['data'][i, :], ], [ out['melt_residual_on_glacier']['data'][i, :], out['melt_residual_off_glacier']['data'][i, :], ], ): real_melt = melt - bias to_correct = utils.clip_min(real_melt, 0) to_correct_sum = np.sum(to_correct) if (to_correct_sum > 1e-7) and (np.sum(melt) > 0): # Ok we correct the positive melt instead fac = np.sum(melt) / to_correct_sum melt[:] = to_correct * fac if do_spinup and yr < start_dyna_model_yr: residual_mb = 0 model_mb = (out['snowfall_on_glacier']['data'][i, :].sum() - out['melt_on_glacier']['data'][i, :].sum()) else: # Correct for mass-conservation and match the ice-dynamics model fmod.run_until(yr + 1) model_mb = (fmod.volume_m3 - prev_model_vol) * cfg.PARAMS['ice_density'] prev_model_vol = fmod.volume_m3 reconstructed_mb = (out['snowfall_on_glacier']['data'][i, :].sum() - out['melt_on_glacier']['data'][i, :].sum()) residual_mb = model_mb - reconstructed_mb # Now correct g_melt = out['melt_on_glacier']['data'][i, :] if residual_mb == 0: pass elif store_monthly_hydro: # We try to correct the melt only where there is some asum = g_melt.sum() if asum > 1e-7 and (residual_mb / asum < 1): # try to find a fac fac = 1 - residual_mb / asum # fac should always be positive, otherwise melt_on_glacier # gets negative. This is always true, because we only do the # correction if residual_mb / asum < 1 corr = g_melt * fac residual_mb = g_melt - corr out['melt_on_glacier']['data'][i, :] = corr else: # We simply spread over the months residual_mb /= 12 # residual_mb larger > melt_on_glacier # add absolute difference to snowfall (--=+, mass conservation) out['snowfall_on_glacier']['data'][i, :] -= utils.clip_max(g_melt - residual_mb, 0) # assure that new melt_on_glacier is non-negative out['melt_on_glacier']['data'][i, :] = utils.clip_min(g_melt - residual_mb, 0) else: # We simply apply the residual - no choice here # residual_mb larger > melt_on_glacier: # add absolute difference to snowfall (--=+, mass conservation) out['snowfall_on_glacier']['data'][i, :] -= utils.clip_max(g_melt - residual_mb, 0) # assure that new melt_on_glacier is non-negative out['melt_on_glacier']['data'][i, :] = utils.clip_min(g_melt - residual_mb, 0) out['model_mb']['data'][i] = model_mb out['residual_mb']['data'][i] = residual_mb # Convert to xarray out_vars = cfg.PARAMS['store_diagnostic_variables'] ods = xr.Dataset() ods.coords['time'] = fmod.years if store_monthly_hydro: ods.coords['month_2d'] = ('month_2d', np.arange(1, 13)) # For the user later sm = cfg.PARAMS['hydro_month_' + mb_mod.hemisphere] ods.coords['hydro_month_2d'] = ('month_2d', (np.arange(12) + 12 - sm + 1) % 12 + 1) ods.coords['calendar_month_2d'] = ('month_2d', np.arange(1, 13)) for varname, d in out.items(): data = d.pop('data') if varname not in out_vars: continue if len(data.shape) == 2: # First the annual agg if varname == 'snow_bucket': # Snowbucket is a state variable ods[varname] = ('time', data[:, 0]) else: # Last year is never good data[-1, :] = np.nan ods[varname] = ('time', np.sum(data, axis=1)) # Then the monthly ones if store_monthly_hydro: ods[varname + '_monthly'] = (('time', 'month_2d'), data) else: assert varname != 'snow_bucket' data[-1] = np.nan ods[varname] = ('time', data) for k, v in d.items(): ods[varname].attrs[k] = v if store_monthly_hydro and (varname + '_monthly') in ods: ods[varname + '_monthly'].attrs[k] = v # Append the output to the existing diagnostics fpath = gdir.get_filepath('model_diagnostics', filesuffix=suffix) ods.to_netcdf(fpath, mode='a')
def zero_glacier_stop_criterion(model, state, n_zero=5, n_years=20): """Stop the simulation when the glacier volume is zero for a given period To be passed as kwarg to `run_until_and_store`. Parameters ---------- model : the model class state : a dict n_zero : number of 0 volume years n_years : number of years to consider Returns ------- stop (True/False), new_state """ if state is None: # OK first call state = {} if 'was_zero' not in state: # Maybe the state is from another criteria state['was_zero'] = [] if model.yr != int(model.yr): # We consider only full model years return False, state if model.volume_m3 == 0: if len(state['was_zero']) < n_years: return False, state if np.sum(state['was_zero'][-n_years:]) >= n_zero - 1: return True, state else: state['was_zero'] = np.append(state['was_zero'], [True]) else: state['was_zero'] = np.append(state['was_zero'], [False]) return False, state def spec_mb_stop_criterion(model, state, spec_mb_threshold=50, n_years=60): """Stop the simulation when the specific MB is close to zero for a given period. To be passed as kwarg to `run_until_and_store`. Parameters ---------- model : the model class state : a dict spec_mb_threshold : the specific MB threshold (in mm w.e. per year) n_years : number of years to consider Returns ------- stop (True/False), new_state """ if state is None: # OK first call state = {} if 'spec_mb' not in state: # Maybe the state is from another criteria state['spec_mb'] = [] state['volume_m3'] = [] if model.yr != int(model.yr): # We consider only full model years return False, state area = model.area_m2 volume = model.volume_m3 if area < 1 or len(state['volume_m3']) == 0: spec_mb = np.nan else: spec_mb = (volume - state['volume_m3'][-1]) / area * cfg.PARAMS['ice_density'] state['spec_mb'] = np.append(state['spec_mb'], [spec_mb]) state['volume_m3'] = np.append(state['volume_m3'], [volume]) if len(state['spec_mb']) < n_years: return False, state mbavg = np.nanmean(state['spec_mb'][-n_years:]) if abs(mbavg) <= spec_mb_threshold: return True, state else: return False, state def equilibrium_stop_criterion(model, state, spec_mb_threshold=50, n_years_specmb=60, n_zero=5, n_years_zero=20): """Stop the simulation when of og spec_mb and zero_volume criteria are met. To be passed as kwarg to `run_until_and_store`. Parameters ---------- model : the model class state : a dict spec_mb_threshold : the specific MB threshold (in mm w.e. per year) n_years_specmb : number of years to consider for the spec_mb criterion n_zero : number of 0 volume years n_years_zero : number of years to consider for the zero volume criterion. Returns ------- stop (True/False), new_state """ if state is None: # OK first call state = {} s1, state = zero_glacier_stop_criterion(model, state, n_years=n_years_zero, n_zero=n_zero) s2, state = spec_mb_stop_criterion(model, state, n_years=n_years_specmb, spec_mb_threshold=spec_mb_threshold) return s1 or s2, state def merge_to_one_glacier(main, tribs, filename='climate_historical', input_filesuffix=''): """Merge multiple tributary glacier flowlines to a main glacier This function will merge multiple tributary glaciers to a main glacier and write modified `model_flowlines` to the main GlacierDirectory. The provided tributaries must have an intersecting downstream line. To be sure about this, use `intersect_downstream_lines` first. This function is mainly responsible to reproject the flowlines, set flowline attributes and to copy additional files, like the necessary climate files. Parameters ---------- main : oggm.GlacierDirectory The new GDir of the glacier of interest tribs : list or dictionary containing oggm.GlacierDirectories true tributary glaciers to the main glacier filename: str Baseline climate file input_filesuffix: str Filesuffix to the climate file """ # read flowlines of the Main glacier fls = main.read_pickle('model_flowlines') mfl = fls.pop(-1) # remove main line from list and treat separately for trib in tribs: # read tributary flowlines and append to list tfls = trib.read_pickle('model_flowlines') # copy climate file and calib to new gdir # if we have a merge-merge situation we need to copy multiple files rgiids = set([fl.rgi_id for fl in tfls]) for uid in rgiids: if len(rgiids) == 1: # we do not have a merge-merge situation in_id = '' out_id = trib.rgi_id else: in_id = '_' + uid out_id = uid climfile_in = filename + in_id + input_filesuffix + '.nc' climfile_out = filename + '_' + out_id + input_filesuffix + '.nc' shutil.copyfile(os.path.join(trib.dir, climfile_in), os.path.join(main.dir, climfile_out)) _m = os.path.basename(trib.get_filepath('mb_calib')).split('.') muin = _m[0] + in_id + '.' + _m[1] muout = _m[0] + '_' + out_id + '.' + _m[1] shutil.copyfile(os.path.join(trib.dir, muin), os.path.join(main.dir, muout)) # sort flowlines descending tfls.sort(key=lambda x: x.order, reverse=True) # loop over tributaries and reproject to main glacier for nr, tfl in enumerate(tfls): # 1. Step: Change projection to the main glaciers grid _line = salem.transform_geometry(tfl.line, crs=trib.grid, to_crs=main.grid) # 2. set new line tfl.set_line(_line) # 3. set map attributes dx = [shpg.Point(tfl.line.coords[i]).distance( shpg.Point(tfl.line.coords[i+1])) for i, pt in enumerate(tfl.line.coords[:-1])] # get distance # and check if equally spaced if not np.allclose(dx, np.mean(dx), atol=1e-2): raise RuntimeError('Flowline is not evenly spaced.') tfl.dx = np.mean(dx).round(2) tfl.map_dx = mfl.map_dx tfl.dx_meter = tfl.map_dx * tfl.dx # 3. remove attributes, they will be set again later tfl.inflow_points = [] tfl.inflows = [] # 4. set flows to, mainly to update flows_to_point coordinates if tfl.flows_to is not None: tfl.set_flows_to(tfl.flows_to) # append tributary flowlines to list fls += tfls # add main flowline to the end fls = fls + [mfl] # Finally write the flowlines main.write_pickle(fls, 'model_flowlines') def clean_merged_flowlines(gdir, buffer=None): """Order and cut merged flowlines to size. After matching flowlines were found and merged to one glacier directory this function makes them nice: There should only be one flowline per bed, so overlapping lines have to be cut, attributed to a another flowline and ordered. Parameters ---------- gdir : oggm.GlacierDirectory The GDir of the glacier of interest buffer: float Buffer around the flowlines to find overlaps """ # No buffer does not work if buffer is None: buffer = cfg.PARAMS['kbuffer'] # Number of pixels to arbitrarily remove at junctions lid = int(cfg.PARAMS['flowline_junction_pix']) fls = gdir.read_pickle('model_flowlines') # separate the main main flowline mainfl = fls.pop(-1) # split fls in main and tribs mfls = [fl for fl in fls if fl.flows_to is None] tfls = [fl for fl in fls if fl not in mfls] # --- first treat the main flowlines --- # sort by order and length as a second choice mfls.sort(key=lambda x: (x.order, len(x.inflows), x.length_m), reverse=False) merged = [] # for fl1 in mfls: while len(mfls) > 0: fl1 = mfls.pop(0) ol_index = [] # list of index from first overlap # loop over other main lines and main main line for fl2 in mfls + [mainfl]: # calculate overlap, maybe use larger buffer here only to find it _overlap = fl1.line.intersection(fl2.line.buffer(buffer*2)) # calculate indice of first overlap if overlap length > 0 oix = 9999 if _overlap.length > 0 and fl1 != fl2 and fl2.flows_to != fl1: if isinstance(_overlap, shpg.MultiLineString): if _overlap.geoms[0].coords[0] == fl1.line.coords[0]: # if the head of overlap is same as the first line, # best guess is, that the heads are close topgether! _ov1 = _overlap.geoms[1].coords[1] else: _ov1 = _overlap.geoms[0].coords[1] else: _ov1 = _overlap.coords[1] for _i, _p in enumerate(fl1.line.coords): if _p == _ov1: oix = _i # low indices are more likely due to an wrong overlap if oix < 10: oix = 9999 ol_index.append(oix) ol_index = np.array(ol_index) if np.all(ol_index == 9999): log.warning('Glacier %s could not be merged, removed!' % fl1.rgi_id) # remove possible tributary flowlines tfls = [fl for fl in tfls if fl.rgi_id != fl1.rgi_id] # skip rest of this while loop continue # make this based on first overlap, but consider order and or length minx = ol_index[ol_index <= ol_index.min()+10][-1] i = np.where(ol_index == minx)[0][-1] _olline = (mfls + [mainfl])[i] # 1. cut line to size _line = fl1.line bufferuse = buffer while bufferuse > 0: _overlap = _line.intersection(_olline.line.buffer(bufferuse)) _linediff = _line.difference(_overlap) # cut to new line # if the tributary flowline is longer than the main line, # _line will contain multiple LineStrings: only keep the first if isinstance(_linediff, shpg.MultiLineString): _linediff = _linediff.geoms[0] if len(_linediff.coords) < 10: bufferuse -= 1 else: break if bufferuse <= 0: log.warning('Glacier %s would be to short after merge, removed!' % fl1.rgi_id) # remove possible tributary flowlines tfls = [fl for fl in tfls if fl.rgi_id != fl1.rgi_id] # skip rest of this while loop continue # remove cfg.PARAMS['flowline_junction_pix'] from the _line # gives a bigger gap at the junction and makes sure the last # point is not corrupted in terms of spacing _line = shpg.LineString(_linediff.coords[:-lid]) # 2. set new line fl1.set_line(_line) # 3. set flow to attributes. This also adds inflow values to other fl1.set_flows_to(_olline) # change the array size of tributary flowline attributes for atr, value in fl1.__dict__.items(): if atr in ['_ptrap', '_prec']: # those are indices, remove those above nx fl1.__setattr__(atr, value[value < fl1.nx]) elif isinstance(value, np.ndarray) and (len(value) > fl1.nx): # those are actual parameters on the grid fl1.__setattr__(atr, value[:fl1.nx]) merged.append(fl1) allfls = merged + tfls # now check all lines for possible cut offs for fl in allfls: try: fl.flows_to_indice except AssertionError: mfl = fl.flows_to # remove it from original mfl.inflow_points.remove(fl.flows_to_point) mfl.inflows.remove(fl) prdis = mfl.line.project(fl.tail) mfl_keep = mfl while mfl.flows_to is not None: prdis2 = mfl.flows_to.line.project(fl.tail) if prdis2 < prdis: mfl_keep = mfl prdis = prdis2 mfl = mfl.flows_to # we should be good to add this line here fl.set_flows_to(mfl_keep.flows_to) allfls = allfls + [mainfl] for fl in allfls: fl.inflows = [] fl.inflow_points = [] if hasattr(fl, '_lazy_flows_to_indice'): delattr(fl, '_lazy_flows_to_indice') if hasattr(fl, '_lazy_inflow_indices'): delattr(fl, '_lazy_inflow_indices') for fl in allfls: if fl.flows_to is not None: fl.set_flows_to(fl.flows_to) for fl in allfls: fl.order = line_order(fl) # order flowlines in descending way allfls.sort(key=lambda x: x.order, reverse=False) # assert last flowline is main flowline assert allfls[-1] == mainfl # Finally write the flowlines gdir.write_pickle(allfls, 'model_flowlines')